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ABSTRACT 
 
 
 
In this thesis, we evaluate the frequency domain approach for data farming and 

assess the possibility of analyzing complex data sets using data sonification.  Data 

farming applies agent-based models and simulation, computing power, and data analysis 

and visualization technologies to help answer complex questions in military operations.  

Sonification is the use of data to generate sound for analysis.  We apply a frequency 

domain experiment (FDE) to a combat simulation and analyze the output data set using 

spectral analysis.  We compare the results from our FDE with those obtained using 

another experimental design on the same combat scenario.  Our results confirm and 

complement the earlier findings.  We then develop an auditory display that uses data 

sonification to represent the simulation output data set with sound.  We consider the 

simulation results from the FDE as a waveshaping function and generate sounds using 

sonification software.  We characterize the sonified data by their noise, signal, and 

volume.  Qualitatively, the sonified data match the corresponding spectra from the FDE.  

Therefore, we demonstrate the feasibility of representing simulation data from the FDE 

with our sonification.  Finally, we offer suggestions for future development of a 

multimodal display that can be used for analyzing complex data sets. 
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THESIS DISCLAIMER 
 

The reader is cautioned that the computer programs developed in this research 

may not have been exercised for all cases of interest.  While every effort has been made, 

within the time available, to ensure that the programs are free of computational and logic 

errors, they cannot be considered validated.  Any application of these programs without 

additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 
We have two key objectives for this thesis research: 

1. Evaluate the frequency domain approach as a data farming technique. 
2. Assess the possibility of analyzing complex data sets using data sonification. 

We seek to accomplish these objectives in the context of the overall data farming 

environment.  Data farming is a “meta-technique” that exploits advancements in three 

core disciplines:  1) Agent-based models and simulations; 2) Computing power; and 3) 

Data visualization.  Data farming is the application of these disciplines to help answer 

complex questions in military operations [Brandstein and Horne, 1998].  Basically, data 

farming is similar to real agricultural farming in that, just as we grow crops and raise 

livestock to feed our bodies, we grow data and analyze the results to answer our 

questions. 

We achieve the first key objective by developing a frequency domain experiment 

(FDE) appropriate for use with terminating simulations.  Just like agricultural farming, 

we begin data farming by planting “genetically-engineered seeds” of data.  We then sow 

our seeds in the data landscape of a peace enforcement scenario using a terminating 

combat simulation.  We allow the data to “grow” from the simulation, and then we “reap” 

the data using spreadsheets and examine the yield using spectral analysis.  By applying 

spectral analysis to the output data sets from the FDE, we separate “the wheat from the 

chaff” in the data sets.  In the frequency domain, the input factors that contribute 

significantly to the output response parameters of the simulation show up as significant 

spectral power peaks in the response frequency spectra.  We compare the significant 

factors from our FDE with those obtained using an alternative experimental design on the 

same combat simulation scenario.  Our results confirm and complement the earlier 

findings.  Both share common significant terms, and some interactions not identified 

using the other experimental design are significant in our FDE.  Moreover, and perhaps 

most importantly, the results of the spectral analysis pass the “common sense test.”  The 

significant factors in the response spectra are attributes of the combat setting that 

intuitively would have substantial effects on the output responses we consider.  Based on 

 xvii



the success of our FDE, we propose some suggestions for further investigation of 

applying FDE to data farming. 

We accomplish our second key objective by developing an auditory display (AD) 

using a data sonification technique.  An AD is a display that represents information using 

sound.  Three reasons lead us to consider the use of an AD for harvesting the data from 

our FDE.  The first reason is the similarity between the spectral analysis of FDE and the 

spectral analysis of acoustic signals; we want to exploit the advantages of spectral 

analysis with respect to the decomposition of higher-order components of acoustic 

signals, which are analogous to higher-order terms and interactions in our model of the 

FDE.  Another reason for considering the use of an AD to harvest the data from our FDE 

is the difficulty of visualizing data sets with high dimensionality.  Visually representing 

data sets with high dimensionality can be difficult because human beings are limited in 

visual perception to three dimensions in space.  Finally, we seek to exploit the natural 

“robustness” of auditory acuity to minimize the tendency to overfit the data set visually.  

The mantra of data collection—“Garbage in, garbage out”—cannot be overemphasized, 

as we are all familiar with the tendency to forget the quality of a data set we are analyzing 

and perform analysis on the data set to a precision not commensurate with its quality.  

Therefore, we seek to develop an auditory display to provide the decision-maker an 

adequate answer that literally “sounds good” in a shorter amount of time than performing 

an unintentionally more rigorous examination of the data set by visualization. 

Sonification is the “use of data to control a sound generator for the purpose of 

monitoring and analysis of the data” [Kramer, 1994].  We apply the following procedure 

to use the output data sets from our FDE to generate sounds for analysis: 

1. Serialize the response data sets into data streams. 
2. Perform 0th-order mapping of data by mapping each element of a response 

data stream directly to the amplitude of the response waveshape of the data 
stream. 

3. Specify the sample rate and upload a response data stream into an audio buffer 
using an open-source software development kit called Java Audio Synthesis 
System (JASS).     

4. Use JASS to store the buffer and stream the data in the buffer to the sound 
card at the specified sampling rate.   
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5. The sound card synthesizes sounds based on the variations of the data stream 
in the audio buffer. 

6. Repeat the sonification for the remaining data streams from our FDE.   

When we hear the sounds of the sonified data streams, we can characterize at least 

three aspects of the sounds: noise, signal, and volume.  We are able to distinguish the 

data streams by these three attributes of the sounds from the sonification.  As we 

qualitatively compare the sounds of the data streams with the corresponding visual 

spectra, we conclude that our sonification of the data streams produces sounds that match 

the response spectra.  Therefore, we believe that we demonstrate the feasibility of 

representing simulation data from the FDE with our sonification scheme. 

Furthermore, based on our results, we assert two implications of our sonification 

with respect to data analysis.  First of all, data analysis using our sonification may reduce 

the number of simulation runs required for data collection, while enabling the analyst to 

inject more complexity in the response by simultaneously varying more factors in the 

FDE.  When we examine an “orchestrated” selection of observations over the entire data 

space, we will be able to see, and hear, a more representative rendering of the chaotic 

behavior and/or the hidden periodicities induced by our FDE.  Secondly, data analysis by 

our sonification may be performed quicker than visualization.  By listening to one entire 

output data stream we can qualitatively differentiate between data streams within a few 

seconds.  Thus, each observation contributes to the analysis, and the overall sound is a 

“symphonic” representation of the data space. 

We are very encouraged by our attempt in integrating simulation output analysis 

and human factors.  We believe there is significant value in further research to develop an 

auditory display using sonification that will benefit data farming in the frequency 

domain. We embarked on our research having in mind the ultimate goal of a virtual 

environment for the analysis of complex data sets.  We imagine that someday an 

immersive environment, created through a multimodal display, would enable the 

operations analyst to use more than just visual and auditory perceptions in order to 

improve understanding of the complexity of military operations.  Through this research 

effort we believe we have advanced one step closer toward this goal, and strongly 

recommend continued research and development to make this goal a reality. 
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I. INTRODUCTION 

This thesis implements an interdisciplinary approach to operations research.  We 

seek to integrate traditional operations research applications (e.g., modeling and 

simulation and data analysis) with human factors.  Human Factors is a field of research 

that is increasingly being explored for application in operations research problems.  The 

goal of this integration is a platform-independent program that will assist operations 

analysts in performing effective and efficient factor screening of complex 

multidimensional data sets.  This thesis proposes an alternate and possibly more efficient 

method of factor screening of complex multidimensional data sets by representing the 

data using an auditory display technique known as sonification.  Moreover, it may also 

instigate further applications of human factors in operations research, particularly in the 

area of data farming. 

Chapter II begins with an introduction of a concept used for data exploration 

called data farming.  Next, it introduces the principles of simulation output analysis.  An 

introduction to the principles of data farming in the frequency domain follows, along with 

a discussion on the procedure used to set up the frequency domain experiment (FDE) 

conducted in this thesis.   

In Chapter III, we present the FDE that we conducted using a scenario in a 

combat simulation.  The procedure established in the previous chapter is applied to the 

FDE in order to assess factors affecting the simulation outcomes of a particular peace 

enforcement scenario.  The results of the FDE are presented at the end of the chapter with 

a discussion that compares them with those obtained from an alternative data exploration 

method. 

Chapter IV describes the development of an auditory display using data 

sonification to represent data sets from the FDE.  It begins with an introduction to sound, 

auditory displays, and sonification.  Examples of auditory and multimodal displays are 

presented next in order to demonstrate existing applications of auditory and multimodal 

displays.  We then discuss the development of an auditory display that applies a 

sonification technique to the data sets of the FDE.  Finally, we present our 
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recommendations for future research on sonifcation of complex data sets and 

development of an auditory display for data analysis. 

Chapter V summarizes the results from the FDE and the development of an 

auditory display using sonification.  We briefly discuss the future potential of integrating 

the two parts of this thesis in the context of the ultimate goal of this thesis research. 
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II. FREQUENCY DOMAIN APPROACH TO DATA FARMING 

A. INTRODUCTION AND MOTIVATION 

1. Data Farming 
Stochastic computer simulations can produce large data sets with high 

dimensionality in both the response surfaces generated from the output as well as the 

number of input factors and Measures of Performance (MOPs).  Analysis of the data sets 

thus may be challenging because of the potential for numerous relationships and 

interactions between simulation parameters, as well as the random component of the 

output.  Data farming is a “meta-technique” that exploits advancements in three core 

disciplines:  1) Agent-based models and simulations; 2) Computing power; and 3) Data 

visualization.  Data farming is the application of these disciplines to help answer complex 

questions in military operations in a process called Operational Synthesis as a part of 

Project Albert.  Project Albert is a research program sponsored by the Marine Corps 

Combat Development Command (MCCDC) [Brandstein and Horne, 1998]. 

As the name implies, data farming is similar to agricultural farming.  Data 

farming utilizes the following four principal processes: 

•  Fertilize the minds of military professionals and other experts with 
ideas on how to capture the important aspects of conflict that have not 
been well-captured in the past, such as morale, leadership, timing, 
intuition, adaptability, etc.   

•  Cultivate ideas from these professionals concerning what might be 
important in a given situation.   

•  Plant these ideas in models to the degree made possible by the model in 
use and run the model over a landscape of possibilities for variables of 
interest.   

•  Harvest the data output from the model using innovative techniques for 
understanding scientific data.  

We do not want to call the actions just described “steps” because they are 
all intertwined into the inquiry process of the scientific method that allows 
us to grow in our understanding.  But, just as you do not grow crops or 
raise livestock in a vacuum, the growth resulting from data farming has a 
larger purpose.  The reason for data farming is to feed our desire for 
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answers to questions.  We can grow an overwhelming amount of data, so 
we continually re-focus on the question at hand and grow data which 
promises to add to our understanding. [Brandstein and Horne, 1998] 

The propensity to produce large multi-dimensional data sets is inherent in the 

need for data farming.  Care must be taken in generating data, because the time required 

to examine all potential factor level combinations is astronomically large [Lucas et al. 

2002].  Capturing the essence of the data set in order to answer our questions is difficult 

because it may be difficult for analysts to understand and interpret the relationships 

between the numerous parameters of a simulation.  Furthermore, because Project Albert 

uses agent-based simulations to model military operations, the simulation parameters 

themselves represent aspects of military operations that are often difficult to 

conceptualize.  Thus, the high dimensionality of data sets and the obscure meaning of the 

parameters compound the difficulty of any attempt at analysis.  Therefore, a key 

objective of this thesis is to evaluate the frequency domain approach as a means of 

planting and harvesting data efficiently in order to better help the analysts and decision 

makers answer complex and difficult questions about military operations and/or other 

complex operations. 

2. Simulation Output Analysis 

As “data farmers,” we plant data by running simulations of models that are 

distillations of the military operations from which our questions arise.  A distillation is a 

simulation of a model that captures the essence of the questions we seek to answer.  

Because they are relatively simpler than the detailed models on which many complex 

military simulations are based, distillations require less computing power to run and can 

be quickly replicated [Brandstein and Horne, 1998].  Furthermore, we develop strategies 

to plant the data efficiently.  We first develop a design of experiment we would use to 

plant our data that we expect would produce the responses we seek.  We then harvest the 

output data produced from the experiment for analysis.  We develop regression models to 

relate the input parameters, which we call factors, and output parameters, which we call 

responses, as part of the output analysis.  We use these regression models, which are 

“meta-models” of the distillations, to estimate and predict responses of the distillations.  

Finally, we analyze the results of the experiment using a variety of analysis methods.   
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In order to apply these analysis methods, we first categorize simulation models 

into terminating and non-terminating simulations.  In a terminating simulation, the 

simulation runs until it satisfies a particular condition or a set of conditions, and then 

terminates.  For example, in a combat simulation, the simulation can terminate when all 

friendly or enemy forces are destroyed, or the simulation can terminate after a user-

specified number of time steps.   In a non-terminating simulation, the condition at which 

to terminate the simulation is ambiguous [Law and Kelton, 2000].  A simulation using an 

M/M/1 queuing model is an example of a non-terminating simulation. 

We also must consider the experimental unit of a simulation.  This affects how 

analysts perform the statistical analysis of the data.  An experimental unit is a set of data 

from which one observation of the statistical sample can be collected.  In a terminating 

simulation, we consider one experimental unit as one run of the simulation.  When a 

terminating simulation is run n times, we have n experimental units toward our statistical 

sample.  However, since data may be collected from a non-terminating simulation at 

specified points in time during the simulation, more experimental units may be gathered 

from one run of a non-terminating simulation than the single experimental unit obtained 

from a terminating simulation. For example, suppose we sample a non-terminating 

simulation at m points in time.  Furthermore, suppose we also replicate the simulation n 

times.  We would now gather m x n experimental units, even though we only replicate the 

simulation n times. 

Whether the data are statistically independent or interdependent is another 

concern in simulation output analysis.  Since it is easier to analyze independent data than 

dependent data, we might attempt to design our simulation experiment such that the 

simulation runs will produce independent data.  Nevertheless, various methods of 

analysis are still available to enable the analysts to extract meaning from the data even if 

independence cannot be achieved. 

Therefore, another key objective of this thesis is to propose an experimental 

design approach for a terminating simulation that minimizes the number of experimental 

units necessary for output analysis.  Moreover, we would like the data generated from the 

proposed design of experiment to have the benefits of independence for the analysis. 
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3. Frequency Domain Approach 
When harvesting data, we want to separate “the wheat from the chaff” in the data 

set—we analyze the sensitivity of output responses to the input factors of the distillation.  

We propose using the frequency domain approach to simulation output sensitivity 

analysis for data farming.  Schruben and Cogliano [1981] first introduced the frequency 

domain approach to simulation sensitivity analysis and applied it to a simulation whose 

input factors could be varied during the run.  In this approach, the factors are oscillated at 

specified frequencies, called driving frequencies, throughout the run.   At specified 

intervals of time steps during a simulation run, the simulation samples the responses and 

collects them in a data set.  Once the simulation has terminated and all data from the 

simulation have been collected, the analyst then applies spectral analysis to each 

response, in turn, in order to decompose the variations in each of the responses into a 

spectrum of frequencies.  In the response frequency spectrum, factors that oscillated in 

the simulation show their relative contribution to the response by the magnitude of their 

spectral power peaks.  Frequencies that are multiples of driving frequencies and the sums 

and differences of driving frequencies, are called indicator frequencies.  Spectral power 

peaks at the indicator frequencies that have significant contribution to the response, as 

displayed in the spectrum, correspond to the contribution of the oscillated factors, their 

higher order terms, and their interactions with one another.  The frequency domain 

approach is an appealing sensitivity analysis technique because many experimental units 

can be collected from one run of the simulation experiment.  Moreover, the analyst can 

simultaneously assess the contribution of all factors and their interactions that are 

included in the regression model using the frequency spectrum.  Therefore, the frequency 

domain approach may be an efficient way for the data farmers to plant and harvest data.   

Figure 1 is a simple example of the frequency domain approach.  The linear 

function represents a non-terminating simulation with one input parameter and one output 

response.  As the input parameter continuously oscillates over the range of interest at the 

driving frequency, the oscillations induce corresponding continuous oscillations in the 

response.  We can then apply spectral analysis to determine the spectral power peaks of 

the response at the parameter driving frequency and assess the sensitivity of the response 

due to the input parameter.    
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Figure 1.   An example of frequency domain approach [Schruben and Cogliano, 1981]. 

 

This thesis proposes to plant data in the data landscape by applying a frequency 

domain approach in a design of experiment similar to Schruben and Cogliano [1981] and 

Sanchez and Buss [1987].  Sanchez and Buss proposed a model for frequency domain 

experiments (FDEs) that provides a technique for factor screening of simulations.  In 

FDEs, input factors are oscillated at assigned driving frequencies.  Then, by careful 

selection of the uniquely determined driving frequencies, the effects of the input 

parameters and their interactions on the response can be identified at the indicator 

frequencies.  Whereas the simulation in Schruben and Cogliano allows factors to vary 

during the simulation run, we use a terminating simulation where the factors cannot be 

varied during the run.  We will explain our design in detail in the following section. 

 

7 



 

B. DESIGN OF FREQUENCY DOMAIN EXPERIMENTS FOR 
TERMINATING SIMULATIONS 
In order to assess the utility and appropriateness of applying the frequency 

domain approach to data farming, we base the design of our experiment on the 

suggestions of Schruben and Cogliano [1981] by using the following procedure: 

1. Selection of Simulation and Scenario 
As mentioned previously, when applying the frequency domain approach, we 

must consider the type of simulation used with respect to its terminating characteristic.  

We design our experiment and assess the proper experimental units based on this 

characteristic of the simulation.  Furthermore, we must also determine whether the data 

generated in each experimental unit of the simulation are independent of each other.  

Obtaining independence of data may reduce the complexity of data analysis methods. 

Another characteristic of the simulation that must be considered is the ability to 

vary input factors and collect output responses while the simulation is running.  Schruben 

and Cogliano [1981] require this characteristic to be designed into the simulation.  

However, most simulations do not have this characteristic, and we as data farmers might 

not have any participation in how the simulation that we are analyzing is designed. 

We must also consider the scenario for the simulation.  As a feasibility study of 

the frequency domain approach, we pick a scenario that has been analyzed using other 

data farming methods.  Thus we are able to compare our results with the results of 

existing analysis as measures of performance. 

2. Selection of Input Factors 
Similar to agricultural farming, it is essential for farmers to understand which 

types of crops to plant, given the soil and weather conditions at the farm, so that the land 

may yield abundant crops.  We data farmers must also know and understand what input 

factors we should plant for our simulation in order to harvest data that would enable us to 

answer the questions we are asking.  However, since the simulation of a complex system 

may have many input factors, we can easily become overwhelmed by the choices of the 

input factors available for planting the data landscape.  We try a combination of factors 

that might have significant effects on the output responses.  We select these initial factors 

based on intuition about the scenario and the simulation.  We also perform test runs to 
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confirm our intuition in a smaller scale, as in planting the data in a small portion of data 

landscape to evaluate the amount and quality of data we might harvest when we plant the 

entire data landscape.  Thus, we judiciously select input parameters based on intuition, 

prior experience and experimentation. 

3. Selection of Driving Frequencies 
In the frequency domain, we decompose the signal we seek to analyze into its 

component frequencies by applying spectral analysis to the signal.  The component 

frequencies are then displayed in a frequency spectrum.  We use angular frequency 

expressed in radians per observation of data for our analysis.  Thus, one cycle of 

oscillations per observation equals 2π radians of oscillations per observation.  

Furthermore, it is sufficient to display only frequencies ranging from [0, π] in the 

spectrum because of the phenomenon called the Nyquist frequency, which establishes the 

upper bound of the spectrum.  The Nyquist frequency is the highest frequency that can be 

composed by two consecutive observations of data sampled at equal intervals.  This 

phenomenon can be explained by the following example:  Suppose we sample from our 

data set in equal intervals.  We can only conclude with certainty that at most one half 

cycle, i.e., π radians, of oscillations occurs in between any two observations because there 

is no way for us to tell how many more oscillations have occurred between the 

observations unless we sample in between the observations.  Hence, the highest 

frequency, i.e., oscillations per observation, is one half cycle, or π radians per cycle.     

A phenomenon related to the Nyquist frequency is frequency aliasing.  This 

phenomenon can be explained using the same example above.  Suppose the signal in the 

example now has a frequency of 3 cycles per observation.  Since the highest frequency 

that can be resolved in the spectrum is one-half cycle per observation, when the signal is 

decomposed by spectral analysis, the indicator frequency of the signal would be “folded” 

back below the Nyquist frequency and “aliased” by the zero frequency, i.e., zero cycle 

per observation.  Thus, the actual frequency of the signal, 3 cycles per observation, has an 

alias at zero cycle per observation in the frequency spectrum.     

Figures 2 and 3 illustrate the relationship between the Nyquist frequency criterion 

and aliasing. 
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Figure 2 shows the differences between an adequately sampled sinusoidal signal 

with an undersampled sinusoidal signal at the same frequency.  The circles on the signals 

indicate the sample values.  The two signals oscillate at the same frequency, but the 

signal on top is sampled more frequently at equal intervals than the signal on the bottom.  

Hence there are fewer signal oscillations possible between two consecutive samples.  

When we apply spectral analysis to the bottom signal, the undersampling causes 

ambiguity in determining the frequency of the signal.  More signal oscillations than can 

be resolved are not sampled between two consecutive samples.  Hence, an “alias” signal 

shows up in the frequency spectrum.  It has a frequency lower than the frequency of the 

actual signal, and it also fits the sample intervals of the actual signal. 

 
Figure 2.   A comparison between sample rates and the consequent aliasing due to 

undersampling [National Instruments Corporation, 2000]. 
 

 Figure 3 illustrates how the Nyquist frequency causes aliasing.  The figure 

displays a continuous frequency spectrum that spans frequencies above and below the 

Nyquist frequency.  We define sampling frequency (fs) as the number of signal cycles 

sampled per unit time.  In the figure, fs is 100 cycles per second, or 100 Hertz (Hz).    The 

Nyquist frequency criterion dictates that the Nyquist frequency (fs/2) of the signal at this 

sampling frequency is 50 Hz because two consecutive samples compose at most one-half 

of a cycle of the signal; therefore, the Nyquist frequency is half the sampling frequency.  

Thus, all signals with frequencies above fs/2 of 50 Hz are aliased back below 50 Hz.  Four 
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signals in the figure, F1 through F4, are on different locations on the spectrum.  F1 (25 

Hz) is well within fs/2 and is not aliased.  F2, F3, and F4 are all aliased back below fs/2, to 

30, 40, and 10 Hz, respectively.  

 

 
Figure 3.   Effect of Nyquist frequency on aliasing [National Instruments Corporation, 2000]. 

 

Therefore, when selecting driving frequencies of input factors, we must consider 

the Nyquist frequency criterion and prevent aliasing from masking indicator frequencies 

in the response spectrum.  In order to accomplish this objective, we use software 

developed by Paul Sanchez [Sanchez et al., 2002] to select the frequency assignments of 

the factors.  The program implements the algorithm of Jacobson et al. [1991]: it considers 

the number of factors varied and assigns driving frequencies that prevent aliasing of 

frequencies. 

4. Selection of Output Responses 

We select the appropriate Measure of Effectiveness (MOE) from the set of output 

responses from the simulation.  However, we first categorize the response into Measures 

of Performance (MOPs) and Measures of Effectiveness (MOEs). We define MOP as a 

quantitative parameter that provides indication of one aspect of system performance.  We 

define MOE as a numerical means of assessing the overall system performance with 

respect to an objective set by the decision maker.  We may select the MOE from the set 

of responses.  We may also consider an MOP to be the MOE.  Nevertheless, we are not 

limited by the set of responses.  We can seek to combine responses and/or MOPs to form 

an aggregate MOE, such as a ratio of two similar responses, if appropriate.  The seminal 

textbook on operations analysis, “Naval Operations Analysis” by Wagner, Sanders, and 

Mylander [1999], provides the following guidance for selecting the appropriate MOE: 
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a. It must be quantitative. 
b. It must be measurable or estimable from data and other 

information available to the analyst. 
c. A significant increase {decrease} in MOE value must 

correspond to a significant improvement {worsening} in 
achieving the decision-maker’s objective. 

d. It must reflect both the benefits and the penalties of a given 
course of action. 

Therefore, we select an output response that is based on the guidance above and 

that we believe might be affected by the oscillations of the input factors when we plant 

the data landscape using the frequency domain approach.   

5. Determination of Indicator Frequencies 
Recall that one benefit of the frequency domain approach is the convenience of 

evaluating higher-order and interaction terms in the regression model.  In the frequency 

domain, the frequency spectrum displays all frequencies contributing to the variations in 

the response.  Furthermore, the indicator frequencies for higher-order effects of the 

oscillated factors on response show up at the multiples of the driving frequencies to 

which the first-order main effects are assigned.  For example, suppose the factor X is 

assigned a driving frequency ω1.  The first-order effect of X on the response frequency 

spectrum has an indicator frequency of ω1.  The quadratic effect of X on the response has 

an indicator frequency of 2ω1.   Similarly, the nth-order effect of X on the response has an 

indicator frequency of nω1 in the response frequency spectrum.  For interaction terms, the 

indicator frequencies are the sums and differences of the driving frequencies.  For 

example, suppose there is a second-order interaction effect on the response from two 

factors, X1 and X2, where X1 and X2 are assigned driving frequencies of ω1 and ω2, 

respectively.  The second-order interaction term in the response, i.e., βX1X2, for some 

constant β, has two indicator frequencies: one at the sum and the other at the difference 

of the driving frequencies of X1 and X2, i.e., ω1 + ω2 and ω1 - ω2, respectively.  This 

result also emphasizes the importance of judicious assigning driving frequencies so as to 

prevent frequency aliasing. 

6. Spectral Analysis of the Output Responses 
By this stage of the data planting process, we have selected the factors to 

investigate and have assigned driving frequencies to these factors.  We have also 
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determined the indicator frequencies based on these driving frequencies that represent all 

possible terms in our regression model.  The driving frequencies are assigned such that 

they all remain within the Nyquist frequency and prevent aliasing of factors at the same 

indicator frequency.  We then plant the data by running and replicating the simulation 

scenario and collecting the data set of the responses.  Now we harvest the data by 

applying spectral analysis to the response data set in order to obtain the response 

spectrum.  We interpret and analyze the response spectrum to seek answers to our 

questions 

Fourier spectral analysis is the analysis of the frequency spectrum resulting from 

the approximation of a function using Fourier series. Although spectral analysis can be 

performed using other function sets as a basis, for the remainder of this thesis, we will 

use the term spectrum to refer to a Fourier spectrum.  The Fourier series approximation of 

a function consists of two orthogonal components, which are sine and cosine functions.  

We summarize the derivation of spectral analysis in the following paragraphs based on 

Chatfield [1996]. 

Consider the model, 

,ZβsinωtαcosωtµX tt +++=  

where Zt is a random process, parameters µ, α, and β are to be estimated, and t is the 

index of observations; t = 1,…, N.  We can represent this model in the matrix form, 
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for some angular frequency ω.  This matrix representation is a general linear model of the 

original model.  Therefore, we apply regression to the general linear model.  The least 

squares estimate of θ is thus:  θ   θ  is called the Fourier transform of .)(ˆ 1 yAAA TT −= ˆ .y   
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Furthermore, the matrix (ATA)-1 becomes a diagonal matrix for 

. 
2
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N
iπ2i K==ω

Moving from the Fourier transform to the spectrum involves squaring the 

estimated coefficients for the sine and cosine terms, and summing them by frequency.  It 

can then be demonstrated that ∑∑
==

+=−
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2
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2
i
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2
i ),β(α)(

N
1 yy  i.e., the Fourier spectrum 

partitions the variance.  Under mild assumptions [Chatfield, 1996], the estimated spectral 

coefficients have a Chi-square distribution. 

 Transforming the original model into its Fourier series representation enables us 

to use all observations of the data set to fit the entire data set.  Hence, the error term in the 

model is unnecessary and therefore omitted.  Furthermore, the coefficients of this Fourier 

series representation at a given frequency ω are now the least squares estimates of the 

original model.  In essence, Fourier analysis partitions the variability in the data by the 

contribution of each frequency in the spectrum to the overall variability in the data. 

 The Wiener-Khintchine theorem relates the Fourier spectrum of the model to the 

Fourier transform of the autocovariance function of the observations in the data set.  

Autocovariance is a measure of the covariance of a sequence of observations with each 

other.  Because these observations are in a sequence, even if there is strong correlation 

between consecutive observations, it is intuitive that the contribution of variance from 

one observation in the sequence to another observation in the sequence reduces as the 

observations become further and further apart in the sequence for a stationary process.  A 

technique called windowing is thus developed to weigh the contribution of the 

autocovariance values of all observations in the data set.  Windowing applies the 

weighting factors to a specified number of observations (M) that is less then the number 

of observations in the entire data set (N).  M is also referred to as the window size.  One 

principle of windowing is to select M such that as M → ∞ and N → ∞, the ratio .0
N
M

→   

One way to accomplish this is to select M to be proportional to N . 
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A more thorough explanation of Fourier analysis can be found in Chapter 7 of 

Chatfield [1996]. 

The frequency spectrum resulting from the spectral analysis of the data shows all 

possible frequencies within [0,π] as discussed in Section 3 above, which includes both 

indicator and non-indicator frequencies.  Nevertheless, both types of frequencies are used 

for our analysis.  The spectral power of a frequency is its contribution to the estimate of 

variance.  We compare the spectral power of the indicator frequencies to the spectral 

power of the non-indicator frequencies in the frequency spectrum.  We attribute the 

spectral power at non-indicator frequencies to variability of the response due to random 

noise.  On the other hand, because the magnitude of the spectral power at a particular 

indicator frequency is an estimator of the contribution of the indicator frequency to the 

variance of the response, we consider the spectral power as the contribution of the term in 

the regression model corresponding to the indicator frequency.  The spectral power thus 

is analogous to the regression coefficient of the term in the model.  Therefore, if an 

indicator frequency has a high spectral power in the response spectrum, the 

corresponding term in the regression model is also significant in its contribution to the 

response.   

For this thesis, we use software designed by Paul Sanchez [Sanchez et al., 2002] 

to perform spectral analysis of the output responses.  The program is written in Java, and 

thus we can use command-line arguments in the command shell of any computer to 

specify the input parameters and the input data file, as well as the output file for the 

resulting spectrum.  The program requires the following inputs:  the number of 

frequencies into which the response is to be partitioned, the window size, the type of 

windowing, and the number of observations in the input data set.  The program then 

estimates the spectrum of the observations and produces a response spectrum.  The 

program automatically adds one more partition to the user-defined number of frequencies 

to partition the spectrum.  This additional partition accounts for the zero frequency.  The 

zero frequency in the response spectrum corresponds to the constant term in the 

regression model.  Thus, the spectral power at the zero frequency signifies the 

contribution of the constant term in the regression model to the response.  
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7. Analysis of Results 
Once we have harvested the data using spectral analysis to develop the response 

spectrum, we can now “reap” the harvest for answers to our questions.  We perform a 

first-pass inspection of the results.  We can immediately notice which indicator 

frequencies literally stand out from the normal noise levels.  We can associate these 

relatively significant indicator frequencies to the effects they represent and make “quick 

and dirty” inferences about how the response is affected by the oscillated factors.  We can 

also infer that the oscillated factors whose indicator frequencies do not show significant 

differences from noise probably do not contribute significantly to the response. 

As mentioned in the previous section, the spectral power of each frequency in the 

spectrum is an estimator of the variance of the response at that frequency.  Thus, under 

the null hypothesis that there is no factor effect, the spectral power of the response 

spectrum has a Chi-square distribution.  We determine the degrees of freedom of the Chi-

square distribution based on the type of windowing used to produce the spectrum, the 

window size, and the size of the data set, which is the sample size.  We then pool together 

the spectral power values of the non-indicator frequencies by summing the values and 

then determining the average spectral power of the non-indicator frequencies.  We also 

determine the degrees of freedom of this pooled noise.  We do not include spectral power 

at the zero frequency in the pool because it represents only the constant term of the 

regression model.  We determine the signal-to-noise ratio (SNR) of the spectrum by 

dividing the spectral values at each of the indicator frequencies by the average spectral 

power of the noise.  The quotient has an F distribution.  We apply the F-test for 

variability such that the null hypothesis indicates that there is no difference between the 

variability contributed by the indicator frequencies on the response and the variability 

contributed by noise.  Since we are simultaneously comparing the variability of all 

indicator frequencies, we determine a Bonferroni level of significance for simultaneous 

comparisons from a level of significance for a single comparison.  From the results of the 

F-test, we then can determine the significant factors in the regression model because the 

indicator frequencies that have significant SNRs correspond to the significant terms in the 

regression model. 
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All of the above is only possible because the experimental units are independent, 

by construction.  It follows from the Wiener-Khintchine theorem that the spectrum of 

independent observations is flat.  Thus, under the null hypothesis that there is no factor 

effect, the heights of the indicator and non-indicator frequencies have the same expected 

value, and their ratio has expected value 1. 
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III. THE FREQUENCY DOMAIN EXPERIMENT 

A. APPLICATION OF THE FREQUENCY DOMAIN APPROACH 
We apply the frequency domain approach discussed in Chapter 2 to a combat 

simulation used as one of the data farming tools in Project Albert.  We then analyze the 

harvest of data to gain insight into the significant factors and compare our results with an 

existing study. 

1. Simulation and Scenario:  MANA Peace Enforcement Scenario 
MANA (Map Aware Non-uniform Automata) simulation was developed by 

Roger Stephen and Michael Lauren for the New Zealand Army and Defense Force.  It has 

a graphical user-interface for specifying initial conditions and trigger states of the agents, 

as well as displaying the simulation run.  A MANA simulation run will terminate after 

the user-specified number of time steps has elapsed.  The input parameters are set at the 

beginning of each run and cannot be varied while the simulation run is in progress.  

Nevertheless, MANA offers the user the ability to specify levels of input parameters 

easily from a formatted input file.  This ability to submit input levels in batches makes 

designing the planting data using FDEs easy. 

  We use a scenario in MANA that models a peace enforcement mission for our 

data landscape.  LTC Tom Cioppa developed the scenario for his doctoral dissertation.  

Below is a description of the scenario: 

The devised scenario is a challenging one since the Blue force is subjected 
to a series of encounters with the Red force and an original non-hostile 
force (Yellow) turns hostile as the scenario progresses.  Blue’s mission is 
to clear area of operation (AO) Cobra … within the next two hours in 
order to facilitate United Nations (UN) food distribution and military 
convoy operations.  Blue uses a light infantry platoon composed of three 
nine-man rifle squads and a platoon headquarters (HQ) of seven soldiers 
containing two machine gun teams.  Their movement scheme is one squad 
up and two squads back with the platoon HQ following the lead squad 
(2nd squad).  The 1st squad task is to follow and support 2nd squad with 
the purpose of clearing AO Cobra.  Their follow-on task is to clear AO 
Python for subsequent UN food distribution and military convoy 
operations.  The 2nd squad task is to conduct a movement to contact with 
the purpose of clearing AO Cobra.  Their follow-on task is to clear AO 
Cobra for subsequent UN food distribution and military convoy 

19 



 

operations.  The 3rd squad task is to follow and support 2nd squad with 
the purpose of clearing AO Cobra.  Their follow-on task is to clear AO 
Boa (a small urban area with four building structures) for subsequent UN 
food distribution and military convoy operations.  After 2nd squad clears 
AO Cobra, the platoon HQ moves to AO Boa to provide supporting fires 
for 3rd squad.   

Red has a five-member element located in the vicinity of AO 
Cobra and two two-member elements patrolling along the movement 
routes of Blue squads 1 and 2.  Additionally, Red has a two-member 
element in vicinity AO Boa.  An originally non-hostile Yellow three-
member element is initially in Blue's starting location.  After discovering 
no safe water in vicinity AO Rattler, Yellow becomes hostile against Blue, 
seeks small arms from vicinity AO Boa, and moves to vicinity AO Python.  
The overall scenario is deemed doctrinally correct and plausible by the 
U.S. Army Infantry Simulation Center at Fort Benning, Georgia…  
[Cioppa, 2002] 

 Appendix A contains the full scenario description.  Figure 4, best viewed in 

color, is the layout of the scenario in MANA. 

 
Figure 4.   Layout of the MANA peace enforcement scenario [Cioppa, 2002]. 
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Since MANA is a terminating simulation, we modify the basic approach of 

frequency domain analysis for a non-terminating simulation to accommodate this 

characteristic.  Recall that the experimental unit for a terminating simulation is one run of 

the simulation, and each run is an observation in our sample.  We specify the time step at 

which a simulation run terminates to 400, based on consultations with LTC Cioppa.  We 

determine the driving frequency assignments for the five factors we choose to oscillate, 

as discussed in Sub-section 3.  We also consider one oscillation of a factor as varying 

from its maximum value down to its minimum value and back to its maximum.  Since the 

lowest driving frequency assignment for this experiment results in one oscillation in 

eighty-one experimental units, we vary the levels of the five factors in eighty-one equal 

increments.  Thus, in one set of eighty-one ordered experimental units we would 

complete at least one oscillation for each factor.  In data farming terminology, we plant a 

“row” of eighty-one “genetically engineered seeds”. 

Next, we arbitrarily select to replicate the set of eighty-one experimental units 

five hundred times.  We consider this one batch of experimental units.  Essentially, we 

produce five hundred sets of eighty-one experimental units and line them up end-to-end 

to produce an indexed series of digitized oscillations for spectral analysis.  We note that 

even though the experimental units are serialized, they are independent from each other.  

The independence property of the experimental units is advantageous for our statistical 

analysis, which is discussed in Section B.  In data farming terminology, we plant three 

batches of seeds.  Each batch has five hundred rows of seeds, and each row has eighty-

one seeds.  Figure 5 is a schematic diagram of data farming using the frequency domain 

approach for our FDE. 
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Data Farming Using the Frequency Domain Approach 
 
Step 1.  Genetically engineer seeds of data. 

 

Factor Min Max Batch 1 Batch 2 Batch 3
U 72 200 1/81 29/81 10/81
F -64 64 4/81 1/81 17/81
G -64 64 10/81 4/81 29/81
P -64 64 17/81 10/81 1/81
V -64 64 29/81 17/81 4/81

Range of Values
Driving Frequencies       

(cycles per observation)

 
The gene pool of data seeds. 

 

Data Seeds
1 seed  = 1 experimental unit

= 1 simulation run
= 1 observation 

in the sample

Data Seeds
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= 1 observation 

in the sample

 

Digitized Driving Frequencies for Batch 1

-100
-80
-60
-40
-20

0
20
40
60
80

100
120
140
160
180
200
220
240

1 11 21 31 41 51 61 71 81
Seed Number

Pa
ra

m
et

er
 V

al
ue

s

 
Comparison of the genetics of one row of seeds in Batch 1. 

 
Figure 5.   Schematic diagram of data farming using the Frequency Domain Approach. 
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Step 2.  Sow seeds in rows. 
 

The Data Farmer

The Simulation

Data Seeds

The Data Field

The Data Farmer

The Simulation

Data Seeds

The Data Farmer

The Simulation

Data Seeds

The Data Field   

3Batch 

2Batch 

1Bath 

3)(81)(500)(X)(3)(500)(3X)(2)(500)(3X)(1)(500)(3X

(81)(1)(3)X(3)(1)(3)X(2)(1)(3)X(1)(1)(3)X

2)(81)(500)(X)(3)(500)(2X)(2)(500)(2X)(1)(500)(2X

(81)(1)(2)X(3)(1)(2)X(2)(1)(2)X(1)(1)(2)X

1)(81)(500)(X)(3)(500)(1X)(2)(500)(1X)(1)(500)(1X

(81)(1)(1)X(3)(1)(1)X(2)(1)(1)X(1)(1)(1)X

kBatch  of Row thj in the gene thi  with theSeed ijkX

Batchk   Row;j   Seed;i
Notation

L

MMMMM

L

L

MMMMM

L

L

MMMMM

L

=

===

 

 
Step 3.  Let crops grow. 

Simulation

Response Data Set

Simulation

Response Data Set
 

 
Schematic diagram of data farming using the Frequency Domain Approach (cont’d). 
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Step 4.  Reap the harvest. 
 

Simulation
Spreadsheet

Serialize each batch by lining rows end to end in order.
⇒ N = IJ ⇒ = nth seed in batch k, n = 1…n.nkxv

Simulation
Spreadsheet

Serialize each batch by lining rows end to end in order.
⇒ N = IJ ⇒ = nth seed in batch k, n = 1…n.nkxv
Serialize each batch by lining rows end to end in order.
⇒ N = IJ ⇒ = nth seed in batch k, n = 1…n.nkxv

 
 

Step 5.  Examine the yield. 
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Spectrum of a response parameter of interest. 

 
Schematic diagram of data farming using the Frequency Domain Approach (cont’d). 
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We ran our design of experiment using the “Gilgamesh” cluster at the MITRE 

Corporation in Woodbridge, VA.  The Gilgamesh cluster consists of 15 nodes of 

Windows NT Workstations.  12 of the Workstations had PIII 550 CPUs with 64MB 

RAM.  The other 3 nodes had PII 450 CPUs and 64MB RAM. 

 Each batch of runs has five hundred sets of the eighty-one levels from our 

frequency domain experiment.  Thus, each batch contains 40,500 experimental units that 

were planted using the Gilgamesh cluster.  The first batch of runs took about 9 hours to 

complete.  The second and third batches each took about 11 hours each to complete.  

Hence, the total number of experimental units we used in our experimental design was 

121,500. 

 2. Input Factors 
LTC Cioppa applied a near orthogonal Latin Hypercube (LH) experimental 

design to the peace enforcement scenario and examined twenty-two factors with 129 

levels [Cioppa, 2002].  For our experiment, we choose the five most influential factors 

that affect the outcome of the scenario, based on consultations with LTC Cioppa.  We 

leave the remaining factors at their nominal values in all runs of the scenario.  Below are 

the five factors we choose to oscillate in our frequency domain experiment (FDE).  Refer 

to Appendix A for a description of all twenty-two input parameters considered in the 

scenario. 

F.  Blue Squad 1 in contact personality element w1 - controls the 
propensity to move towards agents of same allegiance, i.e., this factor 
represents the unit cohesiveness of Squad 1 when it encounters enemy Red 
agents. 

G.  Blue Squad 2 in contact personality element w1 - controls the 
propensity to move towards agents of same allegiance, i.e., this factor 
represents the unit cohesiveness of Squad 2 when it encounters enemy Red 
agents. 

P.  Blue Squad 3 injured personality element w1 – controls the propensity 
to move towards agents of same allegiance, i.e., this factor represents the 
unit cohesiveness of Squad 3 when any members of the squad are injured. 

U.  Blue movement range for all squads - controls the movement speed of 
Blue agents. 
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V.  Red personality element w8 – controls the propensity to move towards 
enemies (Blue) in situational awareness map which are of threat level 1, 
i.e., the aggressiveness of Red agents to pursue a perceived threat. 

Factors F, G, P, and V take on values ranging from -64 to 64.  Factor U takes on 

values ranging from 72 to 200. 

3. Driving Frequencies 
In order to construct our meta-model of the scenario, we assume a second-order 

regression model with all interaction terms and determine the driving and indicator 

frequencies of the five factors and their interactions by applying the frequency 

assignment program called Design, developed by Paul Sanchez.  Table 1 is the output 

of the program showing the driving frequencies for five factors.  

 
Table 1.   List of Driving Factors and Frequency Assignments. 

 
       Assigned Frequency 
 
Factor     Run 1    Run 2    Run 3 
------  ----------- ----------- ----------- 
   1      1 / 81   29 / 81   10 / 81 
   2      4 / 81    1 / 81   17 / 81 
   3     10 / 81    4 / 81   29 / 81 
   4     17 / 81   10 / 81    1 / 81 
   5     29 / 81   17 / 81    4 / 81 
 

The driving frequency assignments are listed in fractions, with the numerator as 

the number of cycles oscillated and the denominator as the number of observations over 

which the oscillations occur.  Thus, for example, the driving frequency assigned to Factor 

1 in Run 1 is 1 cycle in 81 observations.  Similarly, the driving frequency assigned to 

Factor 1 in Run 2 is 29 cycles in 81 observations, and so on.  The number of observations 

over which the oscillations occur is the same for all driving frequencies.  The Design 

program determines that the spectrum must be partitioned into 81 discrete frequencies in 

order to prevent frequency aliasing of the indicator frequencies while insuring that all 

driving frequencies remain within the Nyquist frequency, i.e., one-half cycle per 

observation.  Because the spectrum is thus partitioned, we consequently partition the 

values of the five factors into 81 discrete settings, with the settings at the beginning of 

each oscillation assigned to their respective maximum, as mentioned previously.  Hence, 

rather than having continuous oscillations, our factors oscillate discretely, with the lowest 
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driving frequency oscillating one complete cycle through the range of possible values in 

81 runs of the MANA distillation. 

Note that there are three frequency assignments for each factor in three runs.  We 

consider each run with respect to the frequency assignment to be one batch of five 

hundred “rows” of eighty-one “genetically engineered seeds” that we plant using the 

MANA distillation.  In other words, the frequency assignments remain the same for all 

factors for each batch of data planted.  Because we have three frequency assignment 

schemes for the factors, we plant three batches of data in the data landscape.  The 

different frequency assignments enable the detection of possible frequency dependence of 

responses on the oscillated factors. 

Figure 6 shows the pair-wise variations of five factors in an FDE.  “F1” is factor 1 

and so on.  Each factor is assigned a driving frequency using the Design program.  F1 

has the lowest driving frequency, and F5 has the highest driving frequency.  Note the 

patterns of variations between pairs of factors with high driving frequencies.  For a pair 

of parameters, when the difference between the driving frequencies is proportionately 

large, the FDE tends to sample points at the edges of the parameter levels, e.g., the 

pattern of F1 and F5.  When the difference between the driving frequencies is 

proportionately small, the FDE forms interesting patterns in the parameter levels, e.g., the 

pattern of F3 and F4.  Despite the presence of patterns, all designs are mutually 

orthogonal. 

(As an aside, we compare the patterns of variations between pairs of factors in an 

FDE with those in an LH design of experiment.  Figure 7 shows the pair-wise comparison 

between five factors in LH design of experiment.  We see an interesting and obvious 

difference:  the FDE generates more patterns than the LH.  FDE designs are also denser 

at the edges, sparser to the center, while still spanning the entire two-dimensional space 

of each pair-wise comparison.) 
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Figure 6.   Pair-wise comparisons of five-factor variations in FDE. 

 

 
Figure 7.   Pair-wise comparisons of five-factor variations in LH design of experiment. 
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Table 2 shows how the five factors in MANA we oscillate for the frequency 

domain experiment correspond to the five factors whose driving frequencies are 

determined by the Design program developed by Sanchez [Sanchez et al., 2002]: 

 
Table 2.   Assignment of Factors. 

Factor in Design Factor in Peace Enforcement Scenario 

1 U 

2 F 

3 G 

4 P 

5 V 

 

Hence, Factor 1 represents factor U in the peace enforcement scenario, and so on. 

4. Output Responses 
When performing batching runs in MANA, the distillation stores output 

parameters for the batch in a spreadsheet file such that the output parameters may be 

manipulated for data analysis.  We select two Measures of Performance (MOPs) from the 

set of available response parameters:  The number of red agents killed and the number of 

blue agents killed in each simulation run.  Individually, each MOP represents one aspect 

of the outcome of the course of action (COA).  For example, an increase in the number of 

blue agents killed for one COA over another reflects only the penalty of the COA and 

provides no indication of the benefits for choosing the COA.  Similarly, the converse 

applies to the number of red agents killed.  It only reflects the benefits of a COA and does 

not inform the decision maker of the penalties incurred by choosing the COA.  Hence, we 

seek to determine an MOE based on a combination of the two MOPs. 

Cioppa uses Exchange Ratio (ER) as an MOE for his dissertation.  ER is defined 

as the ratio of the number of red agents killed to the number of blue agents killed 

[Cioppa, 2002].  In our search for the appropriate MOE, however, we also consider three 

other ratios between the number of red agents killed and the number blue agents killed as 
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MOEs.  One is the ratio of the number of blue agents killed to the number red agents 

killed.  We call this ratio the Fractional Exchange Ratio (FER).  FER is the reciprocal of 

ER.  Another ratio is the percent of blue agents killed to the percent of red agents killed.  

Lastly, we consider the ratio of the percent of red agents killed to the percent of blue 

agents killed. 

Recall the guidance for selecting the appropriate MOE in Section II.4.  ER seems 

the intuitive choice for an MOE.  It is quantitative because it is the ratio of the number of 

red agents killed to the number of blue agents killed for each experimental unit in our 

experiment.  An increase in ER, i.e., an increase in the number of red agents killed 

compared to the number of blue agents killed, may correspond to an improvement in the 

blue agents performance in accomplishing the objectives of the scenario.  Furthermore, 

the number of casualties incurred by a course of action reflects the benefits and penalties 

of the selected course of action.  However, we recognize one particular significant 

limitation to ER as an MOE.  In the MANA scenario, there are a total of fourteen red 

agents and thirty-four blue agents.  Suppose blue agents choose a COA so effective that 

they do not incur any casualties.  The ER for this course of action becomes indeterminate 

because it is the quotient of the number of red agents killed divided by the number of 

blue agents killed, which is zero.  Hence, even though the blue agents may select the best 

COA, we cannot draw conclusions from the ER because it is indeterminate.  In fact, we 

discover that there actually are runs where there are no blue agents killed.  (We replicated 

a few of these runs by setting the same random number seeds and factor levels.  We 

discovered that not all blue agents reached their objectives and thus were not exposed to 

enemy fire when the runs terminated after 400 time steps.)  Therefore, we reduce the 

volatility of ER by adding one to the number of blue agents killed to all runs.  We 

recognize that this treatment solves the indeterminate ER problem at the expense of a 

slight shift in distribution of the MOE.  

30 

In general, the FER may have the volatility of division by zero if no red agent is 

killed in any of the outcomes.  After inspecting the data for such occurrences, however, 

we determine that there is no such occurrence in our result; in all runs at least one red 

agent is killed.  Thus, in this peace enforcement scenario, the FER is more stable than the 

ER because it does not have the indeterminate volatility of the ER for our experimental 



 

design.  Nevertheless, the FER does not completely satisfy the four stated criteria for an 

appropriate MOE.  Its behavior is inversely proportional to the measure improvement of a 

COA.  An increase in FER, i.e., an increase in the ratio of the number of blue agents 

killed to the number of red agents killed, indicates that the blue agents have chosen an 

inferior COA since more of them are killed.  Therefore, the FER is a stable ratio for our 

experimental design but does not truly satisfy the criteria for an appropriate MOE. 

Alternatively, we also consider the ratio of the percentage of the number of red 

agents killed out of the initial red force strength to the percentage of the number of blue 

agents killed out of the initial blue force strength as an MOE.  We consider the reciprocal 

of this ratio as an MOE as well.  However, these two candidates have the same problem 

in volatility and representation as both the ER and FER, respectively.  We first consider 

these as candidates because percentages have the benefit of standardizing the proportions 

of agents killed out of the initial force strength.  Comparing proportions of force attrition 

may be beneficial because it is more representative of the actual scenario than the raw 

attrition values.  For instance, the initial red force strength is five agents and the initial 

blue force strength is twenty agents.  Suppose the blue force chooses a COA that results 

in five blue agents killed and five red agents killed.  If our MOE were either ER or FER, 

it would show that the COA is not very effective; there is a one-to-one exchange in 

attrition.  However, if we compare the percentages of attrition, we would find that the 

COA might have some merit:  twenty percent blue loss to one hundred percent red loss!  

Nevertheless, because these ratios of percentages may still suffer the same problems as 

the ER and the FER, they are not considered any more favorably than the ER and the 

FER for the appropriate MOE. 

Because the focus of our thesis is in the feasibility of applying the frequency 

domain approach to data farming, we simply choose for analysis the two MOPs, (the 

number of red agents killed and the number of blue agents killed) and the two straight 

attrition ratios (ER and FER). 

5. Indicator Frequencies 

31 

The Design program not only provides information regarding driving frequency 

assignments in three simulation runs, but also provides a list of indicator frequencies and 

their corresponding terms for all three batches of MANA distillation runs.  We use this 



 

list of indicator frequencies to match the resulting response spectrum to the 

corresponding terms in the regression model.  Table 3 below lists these indicator 

frequencies and their corresponding terms. 

 
Table 3.   List of Indicator Frequencies for Each Run of the Experiment. 

 
    Indicator Frequency    Factors 
 
 Fractional   Decimal   Run1    Run2    Run3 
----------- ---------- -------  -------  ------- 
   1 / 81 (0.012346)   1:0       2:0     4:0 
   2 / 81 (0.024691)   1:1      2:2      4:4   
   3 / 81 (0.037037)   2:1      3:2      5:4   
   4 / 81 (0.049383)   2:0     3:0     5:0 
   5 / 81 (0.061728)   2:1      3:2      5:4   
   6 / 81 (0.074074)   3:2      4:3      5:1   
   7 / 81 (0.086420)   4:3      5:4      2:1   
   8 / 81 (0.098765)   2:2      3:3      5:5   
   9 / 81 (0.111111)   3:1      4:2      4:1   
  10 / 81 (0.123457)   3:0     4:0     1:0 
  11 / 81 (0.135802)   3:1      4:2      4:1   
  12 / 81 (0.148148)   5:4      5:1      3:2   
  13 / 81 (0.160494)   4:2      5:3      5:2   
  14 / 81 (0.172840)   3:2      4:3      5:1   
  16 / 81 (0.197531)   4:1      5:2      4:2   
  17 / 81 (0.209877)   4:0     5:0     2:0 
  18 / 81 (0.222222)   4:1      5:2      4:2   
  19 / 81 (0.234568)   5:3      4:1      3:1   
  20 / 81 (0.246914)   3:3      4:4      1:1   
  21 / 81 (0.259259)   4:2      5:3      5:2   
  23 / 81 (0.283951)   5:5      1:1      3:3   
  25 / 81 (0.308642)   5:2      3:1      5:3   
  27 / 81 (0.333333)   4:3      5:4      2:1   
  28 / 81 (0.345679)   5:1      2:1      4:3   
  29 / 81 (0.358025)   5:0     1:0     3:0 
  30 / 81 (0.370370)   5:1      2:1      4:3   
  33 / 81 (0.407407)   5:2      3:1      5:3   
  34 / 81 (0.419753)   4:4      5:5      2:2   
  35 / 81 (0.432099)   5:4      5:1      3:2   
  39 / 81 (0.481481)   5:3      4:1      3:1   

 

The fractional and numerical representations of the indicator frequencies are 

listed.  Recall that the unit for frequency is cycles per observation.  The numerical 

representation of the frequency is in angular form and the unit for frequency is radians 

per observation, e.g., 1 cycle per observation is 2π radians per observation.  The pair of 

numbers in each of the columns is a second-order representation of the factors.  Thus, for 

example, the lowest indicator frequency of Run 1 is 1 cycle per 81 observations, or 

0.012346 radians per observation.  This indicator frequency represents Factor 1, which is 
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the factor U in the MANA scenario.   Similarly, the driving frequency of Factor 2, the 

factor F in the MANA scenario, has an indicator frequency at 4 cycles per 81 

observations in Run 1, and so forth.   

The second indicator frequency listed is 2 cycles per 81 observations, or 0.024691 

radians per observation.  Recall that, in the frequency domain, products of the same 

factor appear in the response spectrum at multiples of the driving frequency.  Therefore, 

this indicator frequency represents the quadratic effect of Factor 1 in Run 1.  The third 

indicator frequency listed is 3 cycles per 81 observations, or 0.037037 radians per 

observation.  This indicator frequency represents the first-order interaction between 

Factor 1 and Factor 2 in Run 1.  Interaction terms of the factors occur at the sums and 

differences of the driving frequencies of the two factors in the frequency domain.  Hence, 

this indicator frequency is the difference between the driving frequencies of Factor 2, 

which is 4 cycles per 81 observations, and Factor 1, which is 1 cycle per 81 observations.  

Moreover, the next indicator frequency, 5 cycles per 81 observations, also represents the 

interaction term between Factor 2 and Factor 1 because it is the sum of the two driving 

frequencies.  Notice that the indicator frequency for the quadratic effect of Factor 5 in 

Run 1, which is 23 cycles per 81 observations, is not double the driving frequency of 

Factor 5 in Run 1, which is 29 cycles per 81 observations.  This is because the indicator 

frequency for the quadratic effect is aliased back to the spectrum that is within the 

Nyquist frequency.  Doubling the driving frequency of Factor 5 in Run 1 would result in 

58 cycles per 81 observations.  Note that 58 cycles per 81 observations is 23 cycles per 

81 observations from 1 cycle per observation, i.e., 81 cycles per 81 observations.  

Frequency aliasing “folds” the difference back within the Nyquist frequency and thus the 

doubling of the indicator frequency for Factor 5 in Run 1 now appears at 23 cycles per 81 

observations. 

6. Spectral Analysis of the Output Responses 
After data are planted in the data landscape using MANA, we harvest the data by 

collecting the results and analyzing the results in the frequency domain.  We first tabulate 

the number of blue agents killed and the number of red agents killed from each batch 

using Microsoft® Excel.  We also determine the ER and FER by calculating the ratios of 
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these MOPs.  We then process the MOPs, ERs and FERs for all three batches through the 

spectral analysis program, Fourier, designed by Paul Sanchez. 

We use the Fourier programs to perform Fourier analysis on the two MOPs, 

the ERs and the FERs for all three batches.  For each spectrum, we specify the program 

to partition the spectrum into 81 discrete frequency bins.  We choose a window size of 

10,000 observations (M = 10,000) and the default windowing method, which is a 

truncation window.  We specify the program to use all 40,500 observations (N= 40,500) 

in each batch to determine the Fourier spectra.  Finally, we manipulate the spectra and 

represent them visually using Microsoft® Excel.  Thus, we harvest four spectra from 

each batch of simulation runs: one for the number of blue agents killed; one for the 

number of red agents killed; one for the FER; and finally one for the ER with the addition 

of one blue agent to each observation to prevent division by zero.  Appendix B contains 

all of the individual spectra from the harvest.   

We present the response spectra containing all three batches by factors in the 

following figures.  Because each factor has a different frequency in each batch, we sort 

the frequencies by correlating the indicator frequencies in each batch with the associated 

terms in our regression model.  We omit the non-indicator frequencies in these figures 

because we assume they collectively become the noise term in our model.  Furthermore, 

because the spectrum is a partition of eighty-one discrete frequency bins, we present the 

spectra as stacked bar graphs rather than continuous linear graphs.   

In the following figures, Figures 8 through 11, the main and quadratic effects are 

grouped to the left, while the interaction terms are grouped to the right.  The quadratic 

effects are identified by the number “2” after the name of the factors.  We separate the 

terms into our model in these two groups based on their degrees of freedom.  Recall that 

each interaction terms has two indicator frequencies.  The indicator frequencies of each 

interaction term are at the sum and difference of the driving frequencies of the factors in 

the interaction term.  Therefore, the interaction terms have twice the degrees of freedom 

of the main and quadratic terms.   
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Figure 8.     Combined spectrum of the number of Blue Agents killed. 
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Figure 9.   Combined spectrum of the number of Red Agents killed. 
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Figure 10.   Combined spectrum of the Fractional Exchange Ratio (FER). 
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Figure 11.   Combined spectrum of the Exchange Ratio (ER). 
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7. Analysis of Results 
 A visual inspection indicates that some terms dominate the spectra.  For example, 

factors U, U2, F, and V most often have the highest spectral power values.  Because the 

spectra are indications of the variability of factors on the response, we can qualitatively 

infer that these factors contribute most to the variability in the responses.  Furthermore, 

we observe that the interaction term, GP, also contributes noticeably to the variability in 

the responses.  We interpret these “quick and dirty” observations of our responses in the 

context of the scenario.  Because the spectra are representations of the variance, we 

cannot determine whether each term affects the response positively or negatively without 

further analysis.  Nonetheless, the following are the preliminary assessment of the results 

from this qualitative inspection. 

 The movement speed of the blue agents (factor U) significantly affects the 

outcome of the scenario.  This concurs with intuition.  Having the advantage in 

movement speed over the enemy means that the warrior can outmaneuver the enemy and 

position for attack before the enemy has an opportunity to attack.  On the other hand, 

moving at higher speeds means that the warrior will likely run into more enemy contacts, 

and thus will have greater exposure to enemy fire. 

 Unit cohesion in the heat of battle also significantly affects the outcome of the 

scenario.  This behavior is demonstrated by factor F, the propensity of squad 1 to move 

toward agents of the same allegiance when it is in contact with the enemy.  This 

observation agrees with conventional intuition that “there is strength in numbers.”  When 

engaging in battle, the outcome favors the side with the numerical superiority.  We 

observe similar behavior for the protection of the injured, as represented by the term GP.  

This term is the interaction of the propensity for squad 2 to move toward agents of the 

same allegiance when in contact with the enemy (factor G), and the propensity for squad 

3 to move toward agents of the same allegiance when injured (factor P).  However, 

massing on the enemy enables the enemy to concentrate firepower from its own 

positions.  Therefore, unit cohesion can affect losses on both sides. 

Additionally, enemy aggressiveness (factor V) significantly affects the outcome 

of the scenario.  This observation is also intuitive.  The more aggressive the enemy, the 
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more likely the engagement will occur and thus affect the number of casualties on both 

sides. 

Based on observations from this first-pass qualitative inspection, we can thus 

invest more computational time and plant more data to investigate interesting regions of 

the data space.  Moreover, as we screen the factors, we can fit a regression model using 

only the significant terms from our results in order to determine whether the terms have 

positive or negative effects on the response.  Most importantly, these observations show 

that the harvest of data planted using the frequency domain approach passes the 

“common sense test” by producing results that agree with intuition. 

 

B. STATISTICAL ANALYSIS OF RESULTS 
We pool the spectral power values corresponding to the same terms in all three 

batches for each of the four responses.  We also pool the spectral power values at all non-

indicator frequencies, except the zero frequency, for all three batches.  Because the 

spectral power values are unbiased estimators of the variance of the response under the 

null hypothesis that there is no factor effect, we assume that they have Chi-square 

distributions with degrees of freedom equal to the quotient of the number of observations 

in the sample (N) divided by the window size (M) of the spectral analysis.  We calculate 

the Signal-to-noise ratio (SNR) for the responses, which are the ratios of the quotients of 

spectral power values of the regression terms divided by the associated pooled degrees of 

freedom to the spectral power values of the noise divided by the associated pooled 

degrees of freedom.  These SNRs are F-statistics. We then perform a simultaneous test of 

the variance attributable to every one of the terms in the regression model for each of the 

four responses using a F-test at (α = 0.01) level of significance. Figures 12 through 15 

display the resulting SNRs.  The horizontal lines in the figures indicate the F-test statistic 

for the different degrees of freedom.  Recall that the main effects and quadratic effects 

have the same degrees of freedom, while the interaction effects have twice the degrees of 

freedom as the main and quadratic effects because there are two indicator frequencies for 

each interaction term. 
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Figure 12.   Combined SNR of the number of Blue Agents killed. 
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Figure 13.   Combined SNR of the number of Red Agents killed. 
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Figure 14.   Combined SNR of FER (Blue/Red). 
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Figure 15.   Combined SNR of ER (Red/“Blue + 1”). 
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Figure 12 shows the combined spectral ratio of the number of blue agents killed 

for all three batches.  We see that the overwhelmingly dominant factor is the 

aggressiveness of the red agents (Factor V).  This agrees with our qualitative assessment 

of the behavior that the more aggressive are the red agents, the more likely is the number 

of blue agents killed to increase. 

Figure 13 is the combined spectral ratio of the number of red agents killed for all 

three batches.  We see that nearly all of the terms in our regression model are significant.  

The most dominant term is Factor F, the propensity of Blue Squad 1 to move toward 

agents of the same allegiance when in contact with the enemy.  This is one of the factors 

that represent unit cohesiveness.  The next dominant terms are the movement speeds of 

the blue agents, Factor U, which also contributes a significant quadratic term, and the unit 

cohesiveness of the blue agents, Factors G and P.  The quadratic terms of both F and G 

also significantly affect the number of red agents killed, but are not dominant.  It is 

interesting to note that all interaction terms are significant with respect to the number of 

red agents killed.  This result agrees with the qualitative assessment that speed, unit 

cohesion, and enemy aggressiveness all affect the number of red agents killed. 

Figures 14 and 15 show the combined spectral ratios of the FER and ER, 

respectively, for all three batches.  These ratios of the MOPs enhance the dominant terms 

and diminish the remaining terms that are also significant.  Note that the spectral ratios of 

these two MOEs are nearly identical.  This similarity is somewhat reasonable because the 

ratios are reciprocals of each other. 

 

C. COMPARISON OF RESULTS 
From these spectral ratios, we note that all first order effects of the factors 

oscillated are significant: F, G, P, U, and V.  We compare these factors from our 

frequency domain approach with Cioppa’s [2002] regression model for ER based on his 

near orthogonal LH design: 

 ER = 1.890 + (1.928 x 10-7)U2 + (.000457)B + (.000736)E + (.00237)F + 

(.00568)G +  (.000826)P – (.00898)U – (.00327)V– (4.866 x 10-6)BU - 

(3.021 x 10-5)GU – (2.688 x 10-5)FV + (1.378 x 10-5)IJ + (2.225 x 10-6)BN. 
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Qualitatively, we see that the terms we oscillate agree with the terms in Cioppa’s 

model, as we should expect because we used this model to select the factors to oscillate 

for our experiment.  If any of these five factors we oscillate were insignificant, it might 

be a cause for concern about using the frequency domain approach as a data farming 

technique.  Conversely, it might mean that further work was needed to determine why the 

results differed, and the relative strengths and weaknesses of the different approaches.  

Furthermore, we note that the significant interactions in our approach include the two 

terms in Cioppa’s model of factors we choose to oscillate, namely interactions GU and 

FV.  The remaining interactions in Cioppa’s model do not show in our result because 

they include factors that are not considered in our experiment.  Our results also show that 

in addition to the quadratic effect of Factor U, Factors G and V also contribute significant 

quadratic effects to our model of ER. 

 

D. CONCLUSIONS AND RECOMMENDATIONS 

1. Conclusions 
Using our spectral ratios, we compare results of data farming using the frequency 

domain approach with an existing regression model of the scenario.  Based on our 

comparison, we conclude that frequency domain approach is a feasible technique for data 

farming.  For our experiment, we select five significant factors from a peace enforcement 

scenario using the MANA distillation.  We then apply the frequency domain approach in 

designing an experiment to verify that the same five factors are also significant in the 

frequency domain.  The results qualitatively agree with the regression model from which 

we select the five factors.  Furthermore, we show that harvesting the data using the 

frequency domain approach provides a useful visual display for simultaneous comparison 

of factors and interactions that we seek to evaluate.  Because the spectral ratios of the 

terms to the overall noise term represent the variability of the response, the magnitude of 

the spectral ratio for each term indicates the contribution of the term to the variability of 

the response.  We screen the factors by applying F-tests to simultaneous comparisons of 

the SNRs of the terms.  Hence, factor screening can be efficiently performed in the 

frequency domain.  Therefore, we conclude that the frequency domain approach is not 
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only a feasible method for data farming, but also a useful technique for factor screening 

that is easy to generate. 

2. Recommendations 
In achieving the objective of determining the feasibility of the frequency domain 

approach to data farming, we recommend the following issues for further research. 

a. “How many observations are enough?” 

For our example, we arbitrarily determined the number of replications for each 

batch of experiments, because we wanted to make sure that we have plenty of 

observations to obtain sufficient statistical significance for our experiment.  Now that we 

have demonstrated the feasibility of the frequency domain approach, we recommend 

evaluating the number of observations that are sufficient to achieve the same model 

identification results.  This assessment will help determine the efficiency of the frequency 

domain approach in terms of computing power requirements. 

b. “What are the signs of the regression coefficients?” 

Because variance is the square of deviation, the spectral ratio indicates the relative 

magnitude of the coefficients with each other, but not the signs of the regression 

coefficients associated with the terms.  For factor screening, it is sufficient to determine 

the relative contribution to variability of the term to the response.  However, a regression 

model is necessary to fit the data in order to determine whether term affects the response 

positively or negatively.  Therefore, a regression analysis for the model should be 

performed in order to determine the signs of the regression coefficients associated with 

the factors that have been screened using the frequency domain approach. 

c. “What about other factors?” 

We only oscillated five factors for our experiment.  Our comparisons with the 

original model from which the five factors were selected are limited, because the original 

model considers twenty-two factors.  Therefore, we recommend selecting the same 

twenty-two factors for oscillation, planting data in MANA using the frequency domain 

approach, and comparing the results with the existing regression model.  Because the 

spectrum is continuous, there is no limit to the number of indicator frequencies.  
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Therefore, the frequency domain approach can potentially enable factor screening of all 

factors simultaneously.  However, assigning driving frequencies to prevent frequency 

aliasing of the indicator frequencies may become more difficult.  For example, increasing 

the number of factors to oscillate from five to six increases the number of discrete 

frequency bins in the spectrum from 81 to 119.  Oscillating twenty-two factors 

simultaneously increases the number of discrete frequency bins to 2,367.  The increase in 

the number of frequency bins means an increase in the number of observations required 

for one set of simulation runs.  Therefore, the number of factors to oscillate directly 

affects the number of observations required for the frequency domain approach. 

d. “What about higher-order terms?” 

Similar to increasing the number of factors for comparison, assuming a higher-

order model increases the number of frequency bins in the spectrum.  Therefore, unless 

the complexity of the response cannot be sufficiently modeled by second-order models, 

we recommend simply assuming a second-order regression model. 
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IV. DEVELOPING AN AUDITORY DISPLAY FOR FDE USING 
DATA SONIFICATION 

In order to develop an auditory display for FDE using data sonification, we first 

discuss the attributes of sound, the principles of auditory display, and the process of 

sonification.   

 

A. SOUND 
We define the following attributes of sound for our thesis research: 

The frequency of sound is the number of cycles at which sound propagates per 

second.  We measure frequency in the Hertz (Hz); one Hertz is one cycle per second.  

The frequency spectrum for human hearing ranges from 20 to 20,000 Hz.  Note that 

acoustic frequency is synonymous with the frequency we define for our FDE.  

Perceptually, we consider the frequency attribute of the sound as pitch.  When a high-

frequency sound reaches the human listener, we describe the sound as having a high 

pitch.  

The intensity of the sound is the magnitude of energy in the propagation of the 

sound per unit area.  Sound intensity is usually measured logarithmically in units of 

decibels (dB) as the ratio of the energy per unit area of the sound to a reference energy 

level per unit area.  Logarithmic measurements are used because sound intensity can vary 

over a large range of values.  Note that this is analogous to the spectral ratios resulting 

from our FDE, if we present the spectral ratios logarithmically.  Perceptually, we 

consider sound intensity as loudness.   

The complexity of a sound is the most difficult attribute of the sound to define.  

Generally, we associate the complexity of a sound with its waveform, i.e., the shape of 

the wave, as well as the harmonics inherent in the sound, i.e., the number of multiples of 

the fundamental frequencies in the sound.  Fundamental frequencies are similar to notes 

on the musical scale.  Fundamental frequencies are analogous to driving frequencies in 

our FDE, and the harmonics are analogous to indicator frequencies that are multiples of 

the driving frequencies.  Perceptually, we consider the complexity of a sound as timbre.  
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For example, the timbre of a violin is different than the timbre of a flute, even when the 

violinist and the flutist play the same note. 

Sound also has temporal and spatial attributes.  For our thesis, we consider one 

temporal attribute—the duration of the sound, i.e., how long we should generate the 

sound.  Spatially, we consider the location of the sound relative to the listener.  We use 

the polar reference coordinate system to describe the location of the sound by its 

elevation, azimuth and radial distance from the reference location. 

Detectability of sound signals varies with frequency, intensity, and duration.  

Because sound is always present in the natural environment, we define detectability as 

the ability to detect an audio signal embedded in background noise.  Detectability of a 

signal in noise depends on the sound intensity, frequency and the duration of the signal 

and the background.  We introduce a measure for distinguishing two similar sounds in the 

following paragraphs.  With respect to duration of a sound, however, there are some 

neurological limitations for auditory perception that establish a minimum duration for the 

human listener to perceive the signal—a sound signal should last at least 500 

milliseconds in duration for the listener to perceive the signal [Sanders and McCormick, 

1993]. 

In order to differentiate one level of a sound attribute from another, we define just 

noticeable difference (JND) as “the smallest change or difference along a stimulus 

dimension (e.g., intensity or frequency) that can just be detected 50 percent of the time by 

people” [Sanders and McCormick, 1993].  For example, JND in sound frequency is the 

minimum difference in frequency between two sounds that have the same intensity and 

timbre for the human ear to distinguish the two sounds as different 50 percent of the time.  

Similarly, JND in sound intensity is the minimum difference in intensity between two 

sounds that have the same frequency and timbre for the human ear to distinguish the two 

sounds as different 50 percent of the time.  Experiments using pure tones, i.e., sounds 

generated from pure sinusoidal oscillations, show that for two pure tones having the same 

frequency, the JND in sound intensity between the two tones is smallest when the tones 

have high intensity.  Sound intensity also affects the JND in frequency between two pure 

tones.  The JND in frequency is smallest between two pure tones at low frequency having 
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the same intensity.  Between two low-frequency pure tones, the JND in frequency is 

smallest if the tones have high intensity [Sanders and McCormick, 1993]. 

Spatially, a sound source directly in front of a human listener must displace about 

one arc-degree laterally for the listener to notice a difference in location, However, the 

listener would not be able to accurately perceive changes in location unless the sound 

source is displaced as much as 15 arc-degrees laterally from the front of the listener.  

Furthermore, spatial acuity of sound varies with orientation from the listener and 

dimension.  A sound source directly to the side of a human listener must be displaced 10 

arc-degrees before the listener notices the change in location.  Changes in distance of a 

sound source from the listener are generally difficult for the listener to distinguish 

[Shilling and Shinn-Cunningham, 2002].  

 

B. AUDITORY DISPLAYS AND MULTIMODAL DISPLAYS 

1. Introduction 
An auditory display (AD) is a display that represents information using sound.  

Familiar examples of auditory displays like a doorbell and a telephone announce to those 

within hearing range of visitors at the door and on the phone, respectively.  Complex 

auditory displays that enhance data analyses and complement data visualization are 

emerging.  We will present more of familiar and complex examples of auditory displays 

in Section D.  For now, we present some benefits and limitations of AD. 

One benefit of an AD is that it can complement a visual display.  When 

information is presented using an AD for monitoring and warning purposes in 

conjunction with visual displays, the AD enables the user to freely and simultaneously 

perform other tasks that require visual focus.  For example, auditory displays used in 

cockpits of aircraft for audible warnings and indications of the flight environment reduce 

pilot workload and enhance situation awareness.  Similarly, adding sound to the visual 

picture engages and enhances the interest of the user, if properly designed.  The strongest 

evidence for the enhancement of visual perception with auditory is the appeal of a good 

movie with good sound effects [Shilling and Shinn-Cunningham, 2002].   

47 



 

Unlike visual perception, which has a limited field of view, our “field of sound” is 

omnidirectional and continuous.  We stop seeing, temporarily, when we close our eyes, 

but we cannot stop hearing at any time unless we somehow cover or plug our ears.  

Hence, another potential benefit of AD is spatial presentation of information around the 

user.  Spatial auditory display (a.k.a. spatial audio, 3-D audio, surround sound, etc.) is an 

emerging field of research made possible by the advancement in computer technology.  

Experimental spatial auditory displays representing threat, navigational, and targeting 

information in the cockpit of an AH-64A attack helicopter simulator show promising 

results for development of spatial auditory displays [Shilling et al., 2000]. 

The lack of orthogonality of sound attributes is a major limitation of auditory 

display for data representation.  Changing one attribute of sound may affect other 

attributes of the same sound.  The aforementioned differences in JNDs with frequency 

and intensity of sound are examples of this limitation.  Therefore, the lack of 

orthogonality of sound attributes can make representing data using sound difficult. 

A more thorough discussion of the benefits and limitations of AD can be found in 

Kramer [1994]. 

Three reasons led us to consider the use of an auditory display for harvesting the 

data from our frequency domain experiment.  First, there is commonality between 

spectral analysis (as applied in our FDE) and acoustic signal analysis; in fact, they are 

identical.  When we applied the spectral analysis to our data set, we decomposed the 

oscillations of the response into their component frequencies.  Similarly, acoustic signal 

analysis decomposes signals, i.e., data, in the acoustic range of the frequency spectrum 

and analyzes the component frequencies.  The similarities between the two applications 

of the same analysis technique are familiar personally to the author because of his 

experiences with sonar.   

Another reason for considering the use of an auditory display to harvest the data 

from our FDE is the difficulty of visualizing data sets with high dimensionality.  For our 

FDE, we examined five factors out of the many available factors in MANA from which 

we may choose and relate them to two responses.  Suppose we assign each of the five 

factors to a dimension and examine each response as a function of those five factors.  
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Representing the function visually is impossible because human beings are limited in 

visual perception to three dimensions in space even though the function has six 

dimensions.  Granted, there are advanced data visualization computer programs and 

techniques that can present many dimensions of a complex data set.  Nevertheless, these 

displays still cannot adequately convey orthogonality between dimensions beyond much 

more than three dimensions.  Furthermore, visualization of too many parameters can 

saturate the visual perception.  Hence, in a sense, representing multidimensional data 

using a visual display has similar difficulties as using an auditory display.  For example, 

the spectral ratios that we harvest from our data are visual representations of responses 

with respect to all five factors and their interactions.  Nevertheless, the spectral ratios are 

only summaries of the relationships between the factors and the responses and are not 

representations of the data space per se.   Therefore, we also want to consider alternative 

methods of displaying data besides visualization.   

Finally, we seek to exploit the natural “robustness” of auditory acuity to minimize 

the tendency to overfit the data set visually.  The mantra of data collection—“Garbage in, 

garbage out”—cannot be overemphasized.  However, the average analyst tends to forget 

the quality of the data with respect to accuracy and variability, and attempt to analyze the 

data, e.g., perform regression analysis, to a precision that is not commensurate with the 

quality of the data.  Hence, we tend to “read more into” the data than we should when we 

analyze the data set.  For operations analysts, overfitting data costs the operational 

decision-maker time and resources while waiting for the analysis results.  Therefore, we 

seek to develop an auditory display to provide the decision-maker an adequate answer 

that literally “sounds good” in a shorter amount of time than performing an 

unintentionally more rigorous examination of the data set by visualization. 

One of the goals of this thesis is to assess the feasibility of using an auditory 

display for data analysis.  Hence, we develop and describe an auditory display prototype 

by using data sonification techniques. 

2. General Design Principles 
Just as there are sound principles for graphical representations of data, e.g., Tufte 

[1983], there are some principles for developing effective auditory displays, e.g., Kramer 

and Smith et al. [both in Kramer, 1994].  These principles can be distilled into one 
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fundamental principle:  “Represent the information in a way that is understandable.”  

With respect to AD, this means mapping parameters of the data set to different attributes 

of sound in an effective way, with consideration of the benefits and difficulties of 

auditory displays.  Some data are more easily represented with sound than others.  For 

example, data from the frequency domain such as acoustic signals, seismic data, and 

FDEs, can be directly represented using an AD.  On the other hand, data that do not have 

natural relationships to sound require some level of abstraction and subjective judgment 

in order to map parameters from one data set to attributes of sound.  For example, Bly 

sonified categorical data such as the famous Fisher’s iris data set for her dissertation 

using pitch, volume, duration and waveshape [Bly, 1982].  

Nevertheless, designing an effective auditory display is not a trivial task.  Some 

principles for data sonification are intuitive, but difficult to implement.  Therefore, this 

thesis attempts to design and experiment with an auditory display in order to facilitate the 

process of factor screening in FDEs with multidimensional data sets for data farming.  

The goal of this attempt is an auditory display that will effectively communicate the 

FDEs in data farming efficiently. 

 

C.   SONIFICATION 

1. Purpose 
Sonification is the “use of data to control a sound generator for the purpose of 

monitoring and analysis of the data” [Kramer, 1994].  We define sound generator as a 

means of mapping dimensions in the data set to attributes of sound, and subsequently 

rendering the sound for the human listener.  The purpose of sonification is to increase a 

user’s ability to perceive and analyze a greater number of data dimensions.  Whereas our 

visual perception limits the number of dimensions graphics display can represent, we 

attempt to present more dimensions of the data set to the user at one time by sonification. 

An often-cited paper on data sonification is the doctoral dissertation of Sara Bly 

[1982].  Bly compared the effectiveness of sonification and visualization of data.  She 

encoded three types of data—multivariate, logarithmic, and time-varying data, into 

sound.  Bly experimented with human participants to compare the rates of correct 
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identifications using three treatments: sound-only representation, graphics-only 

representation, and a combined sound-and-graphics.  The results of Bly’s experiments 

demonstrated significant differences in the identification rates among the treatments.  The 

combined sound-and-graphics representation of the data had the highest percentage of 

correct identifications, followed by sound-only representations, then by graphics-only 

representations.  We note that Bly used a computer battle simulation data as a test data 

set: 

Professor Sam Parry of the Naval Postgraduate School… suggested a 
time-varying application.  Computer battlefield simulations which run 
from start to finish without human interaction provide information about 
the state of the battle at each time step.  To an analyst interested in the 
results of the simulated battle, this information is often an overwhelming 
collection of statistics.  Nevertheless, it is important to note the battle 
characteristics which yield various results.  Thus the information at each 
time step encoded into sound results in a song for each battle.  Listening to 
the songs provides a quick view of the battle in progress and draws 
attention to critical points during the battle [Bly, 1982]. 

Although the MANA distillation collects data from each simulation run in time-

step increments, we do not examine the progress of each run by time-steps, but rather the 

summary results from the simulation runs because we perform a large number of runs.  

However, MANA does use limited sound effects to indicate the occurrence of certain key 

events in the simulation run with sound, though the collection of these sounds in each 

simulation run does not even come close to resembling a battle song.  Nevertheless, the 

above suggestion for sonification of combat simulations from over twenty years ago is 

still valid.  To date there is no combat simulation that integrates sonification as part of the 

output analysis technique.  Based on the success of Bly’s and subsequent experiments, 

sonification of combat simulation data may be a more useful technique than graphical 

visualization of data for analyzing the complexity and multidimensional nature of 

combat. 

2. Attributes of Sound Synthesis 
A sound generator has two general components:  the data processing component 

and the hardware component.  After determining the mapping of the dimensions of data 

to the attributes of sound, the sonification designer interfaces with the data processing 

component of the sound generator and uses it to perform the mapping.  Once data are 
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mapped to sound attributes, the sound generator produces the sound using the hardware 

component for the user to hear and thus analyze the data.  An example of a sound 

generator is a computer algorithm that maps data dimensions to attributes of sound and 

then renders the sound for output through the speakers of the computer.  This type of 

computer algorithm is a sound synthesis algorithm. 

We consider the following attributes of sound synthesis as the basis of our 

sonification technique: 

We define sampling as the process of digitizing the analog oscillations of a sound 

in equal time intervals.  The soundboard in a computer receives its signal to generate 

sound from an input audio data stream, i.e., an ordered series of data elements 

representing digitized samples of oscillations of the sound to be generated.  The rate at 

which the soundboard samples the data stream is the sampling rate.  The user can specify 

the sampling rate; however, the current nominal sampling rate of a personal computer is 

44,100 samples per second.  In order to maintain the specified sampling rate, the data 

stream is stored in and retrieved from a “First In, First Out” (FIFO) audio buffer.  We 

define the buffer size as the number of data elements that can be stored in the audio 

buffer.  Each time the soundboard samples a number of data elements equaling the buffer 

size, the soundboard completes sampling one cycle of oscillations in the data stream. The 

output frequency of the sound from the data stream depends on the sampling rate and 

buffer size of the data stream.  The output frequency is proportional to the sampling rate 

and inversely proportional to the buffer size:   

cycle)per  (samples sizebuffer 
second)per  (samples rate sampling second)per  cycles (Hz;frequency Output = . 

Furthermore, audio data streams may be mapped to the parameters of sound in the 

following order: 

In a 0th-order mapping, the data stream itself is listened to as a stream of 
digital audio samples. 
In a 1st-order mapping, the data stream controls a parameter or parameters 
of a synthesis model (e.g., the data controls the amplitude of an oscillator). 
In a 2nd-order mapping, the data stream controls the parameters of a 
synthesis model that controls the parameters of another synthesis model 
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(e.g., the data controls the amplitude of an oscillator that, in turn, controls 
the frequency deviation of another oscillator). [Scaletti; in Kramer, 1994]. 

Another sound synthesis technique is waveshaping.  Waveshaping is the 

transformation of component frequencies into complex frequencies.  The transformation 

is the result of applying a transfer function to the elements in the data stream.  “Each 

element in a data stream g could be interpreted as an argument to a function f, where only 

the output of f is actually heard (or used to control the parameter of another sound)” 

[Scaletti; in Kramer, 1994].  An example of waveshaping transformation is Taylor 

approximations of a trigonometric function, where the input function g(t) is a sinusoid, 

e.g., a cosine function, and the transfer function f(x) is a polynomial, and thus f(x) 

becomes the nth-order Taylor approximation of g(t).  We note that this is very similar to 

our process of spectral analysis of MANA simulation data.   

 

D. EXAMPLES OF AUDITORY DISPLAYS USING SONIFICATION 

1. Classic Examples 
An example of a common auditory display is the household smoke detector.  A 

smoke detector senses the amount of particulates in the room due to smoke and triggers 

an audible alarm to warn occupants in the room of fire.  Another example of an effective 

auditory display is the Geiger-Mueller radiation detector, commonly called the Geiger 

counter.  The Geiger counter detects ionizing radiation particles and displays the amount 

of radiation it senses visually and sonically.  Each radiation particle reaching the detector 

causes an ionizing event in the detector, which the Geiger counter converts into a voltage 

deflection in its detection circuitry.  The voltage deflection is converted into rate of 

detection, in counts per unit time. The radiation level measured in rates is displayed using 

a mechanical or digital meter visually.  In addition, the voltage deflection also causes a 

“click” to sound from the speaker or headset of the Geiger counter.  The number of 

“clicks” in an interval of time thus directly represents the radiation level detected.  It is a 

well-known fact that the auditory representation of radiation level in the Geiger counter is 

more sensitive and responsive to changes in the radiation level than the visual display.   

The two examples above are general applications of auditory display.  The smoke 

detector is a pure auditory display in that information is only presented with the sound of 
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the smoke alarm.  However, the Geiger counter presents information not only with an 

auditory display, indicating the radiation level with the amount and rapidity of audible 

clicks, but also with a visual display to provide a meter reading of the radiation level.  

Hence, the Geiger counter can also be classified as a multimodal display in that it 

presents information using more than one sensory modality.  The Geiger counter also 

represents an example of a simple sonification model, while the smoke detector is merely 

an auditory display. 

A classic example of a multimodal display is sonar.  Sonar (Sound Navigation and 

Ranging) onboard a ship or submarine receives sounds in the ocean via hydrophones.  A 

hydrophone is basically a microphone designed for use in water.  A hydrophone 

transduces acoustical energy of sound into electrical energy for signal processing.  

Sources of sounds in the ocean include marine animals, a.k.a. biologics, ships and 

submarines, as well as seismic activities.  As these sounds propagate in the ocean, the 

array of hydrophones of a sonar system senses the sounds and transduces the sounds into 

electrical signals.  The sonar signal processor analyzes the signals and converts the 

signals into visual and auditory displays.  The visual display portion of sonar presents 

sounds as pixels on a video screen.  The visual display is a display of sound duration with 

respect to time, with the most recent pixels of sounds appearing along the top of the 

display by the directions from which they are received.  The sonar operator can also wear 

a headset and listen to a sound appearing from one direction on the visual display by 

“steering” the signal processor to sonify the sound at that direction.  As the sonar operator 

hears the sound, he evaluates the type of sound aurally.  If the sound is from a source of 

interest, e.g., a ship, he can analyze the sound and classify the ship.  Hence, sonar is a 

multimodal display that represents acoustic information both visually and auditorily for 

the sonar operator to monitor and analyze. 

2. Innovative Examples 
For the inaugural conference of the International Conference on Auditory Display 

(ICAD) in 1992, Bly [in Kramer, 1994] solicited several auditory displays of two 

multivariate data sets using data sonification.  One data set was relevant for 

discriminatory tasks, i.e., determining the similarities and differences between data sets.  

Another data set was a multidimensional time-varying data set relevant for pattern 
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recognition.  Each data set had six variables, i.e., six dimensions.  Three different 

displays using different sound mapping techniques were applied to the first data set.  The 

most successful display was the one that mapped the sum of squares of the six 

dimensions to pitch.  Bly’s conclusion enforces the fundamental design principle of AD:  

“Serious consideration must be given as to which factors will make the process of data 

exploration, especially sonification, most effective” [Bly; in Kramer, 1994].   

Fitch and Kramer [in Kramer, 1994] experimented with an auditory display that 

represented eight time-varying physiological variables of a computer-simulated patient: 

1. Body temperature, 
2. Heart rate, 
3. Blood pressure, 
4. Blood carbon dioxide level, 
5. Respiratory rate, 
6. Atrio-ventricular dissociation, 
7. Fibillation, and 
8. Pupillary reflex. 

The first five variables varied continuously with time while the last three had 

binary states.  Fitch and Kramer used sounds that mapped naturally to the variables for 

their sonification:  The heart rate was sonified with a sound resembling the beating of a 

heart and the respiratory rate was sonified with a sound resembling a person breathing.  

They then applied modifications to attributes of these two sounds to signify variations in 

the remaining variables.  For example, they varied the pitch of the heart sound with 

variations in blood pressure.  The design of their experiment was similar to Bly’s  

dissertation research [Bly, 1982].  Participants for the experiment were given three 

treatments in random order:  1) auditory display only; 2) visual display only; and 3) 

combined auditory visual display.  The visual display used in the experiment was similar 

to the nominal visual display of the physiological data by used in the medical community.  

Participants were asked to respond with the proper remedial actions when abnormal 

indications of the variables manifested in the treatment display.  The results showed that 

the participants responded to indication of abnormalities faster when using the auditory 

display than the other two treatments.  This example reinforces the assertion that effective 

AD enables the user to perceive information better than a visual display of the same 

information. 
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Blattner et al. sought to enhance a two-dimensional static graphics displays, i.e., 

maps, with sonification [Blattner et al.; in Kramer, 1994].  First, they examined the 

structure of sound and organized it similar to the linguistic hierarchy.  The basic 

parameters of sound such as frequency and volume belong in the lexical level of sound.  

The next level of sound is the syntactic level.  In this level, earcons, the auditory 

equivalent of icons, are formed by motives.  Motives are short sequences of tones created 

by manipulating the lexical parameters of sound.  The semantic level of sound is the 

highest level in the structure of sound.  This is the level in which a combination of 

earcons represents an expression that can be interpreted and understood by the user.  This 

structuring of sound is similar to object-oriented programming in computer languages, 

where hereditary relationships exist between objects representing program elements.  

Blattner et al. used these so-called “earcons” to represent traditionally visual cartographic 

data on a digitized two-dimensional map displayed using a computer.  As the user 

pointed to a location on the map using a mouse, earcons would sound to present 

information about the location that could not be displayed on the map.   

Barras and Zehner [2000] developed a Responsive Workbench that allows the 

user to interact with the multidimensional data from well-logs.  A well-log is the 

recording of a geological attribute, such as neutron density or radiation level, along the 

path of a hole in the ground drilled for geological survey.  The Responsive Workbench 

sonifies well-logs of different geological attributes of a drill hole by representative 

audible clicks, similar to a conventional Geiger counter, to indicate levels of the 

parameters with respect to depth along the well-logs.  The user accesses the data with the 

probe of a “Virtual Geiger Counter” on a three-dimensional visual display of the well-

logs.  The user selects the well-log of an attribute to analyze with the Virtual Geiger and 

points the probe at the region of interest on the well-log.  The Virtual Geiger then 

produces audible clicks representing the value of the geological attribute in a well-log at 

the region for the user to hear and analyze.  The Virtual Geiger also allows the user to 

hear well-logs of several attributes at the same time.  The simultaneous sonification of 

several well-logs enable the user to evaluate the relations between the well-logs.  This 

bimodal display is a popular emerging technique in the field of oil and gas exploration. 
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Hermann, Meinicke, and Ritter [2000] applied Principal Curve Sonification (PCS) 

to multidimensional data sets in order to evaluate the structure of the data set 

acoustically.  The principal curve of a data set with continuous parameters is the 

projection of the principal components of the data set onto one dimension.  PCS uses a 

model-based sonification scheme to sonify a data element based on its relationship from 

its projection onto the principal curve.  The model sonifies the data element in a way that 

is intuitive for the user to understand.  PCS represents each data element with a tick 

sound; again, similar to a Geiger counter.  The distance from the projection on the 

principal curve is proportional to the volume of the tick.  The tick is spatially located 

relative to the reference orientation of the user along the principal curve.  Any additional 

feature of the data element, e.g., its class label, is represented by the frequency of the tick.  

The auditory display of PCS presents the user time-variant auditory scenes of the data as 

the user proceeds along the principal curve.  The user can thus assess the structure of the 

multivariate distribution of the data set. 

We present examples of both pure auditory displays and multimodal displays 

because of our fledgling concept of a virtual environment for the analysis of complex 

data sets:  An immersive environment such that the analyst can use more than just visual 

and auditory perceptions to extract information from the simultaneous display of many 

dimensions of a complex data set.  This concept presumes that such a multimodal display 

improves perception and situation awareness by engaging more senses for perception.  

However, because we can’t get there from here, yet, we want to first evaluate the 

feasibility of sonifying data from our FDE for analysis. 

 

E. AN AUDITORY DISPLAY OF DATA SONIFICATION USING JASS 

1. Java Audio Synthesis system (JASS) 
Java Audio Synthesis System (JASS) is an open-source sound synthesis software 

developed by van den Doel and Pai [2001].  We reviewed other sound synthesis software, 

e.g., Csound, before choosing JASS for our sonification.  We had two reasons for 

choosing JASS.  First, JASS is written in Java and benefits from object-oriented 

programming and platform independence.  The other sound synthesis programs are 
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written in programming languages other than Java, such as C++, or other specialized 

languages.  Second, JASS is a cost-free, open-source program. 

JASS is designed to produce model-based sound effects for simulations.  JASS 

uses three core abstract classes called unit generators (UGs):  In, Out, and InOut, and 

two interfaces, Sink and Source, as building blocks for sound synthesis.  The Source 

interface contains methods for maintaining an audio buffer.  The Sink interface contains 

methods for maintaining and storing Source objects.  The unit generator In implements 

the Sink interface. Thus, an extension of the In abstract class enables retrieval of audio 

buffers.  The unit generator Out implements the Source interface.  Thus, an extension 

of the Out abstract class enables the production audio buffers.  The unit generator 

InOut implements both Sink and Source interfaces.  Thus, an extension of the 

InOut abstract class can produce and retrieve audio buffers. 

The engine package of JASS contains the above unit generators and interfaces.  

JASS has two other packages.  The generator package contains extensions of the abstract 

classes in the engine package for basic sound processing and synthesis.  The render 

package also contains extensions of the abstract classes in the engine package, but these 

extensions are used to interface with JavaSound Application Programming Interface 

(API) in order to produce the desired sonification using the sound hardware in the 

computer.  Classes in the render package also perform basic utility functions such as 

formatting audio data and designing simple graphical user interface (GUI). 

JASS also provides some examples of sonification to simulate sounds and sound 

effects on the Internet:  http://www.cs.ubc.ca/~kvdoel/jass/. 

2. Sonification Procedure 
We sonified the output data sets of the FDE in order to perform factor screening 

and analysis.  The response data sets from our FDE were most similar to the sets of 

values of transfer functions as mentioned previously.  In essence, the MANA distillation 

is the waveshaping transfer function, and it produces the response for sound synthesis.   
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For our sonification, we considered the simulation as the waveshaping function 

and attempted to synthesize sound from the batches of simulation output data.  We 

performed the following six steps in order to sonify our data: 



 

1. Serialize the response data sets into data streams. 
2. Perform 0th-order mapping of data by mapping each element of a response 

data stream directly to the amplitude of the response waveshape of the data 
stream. 

3. Specify the sampling rate and upload a response data stream into an audio 
buffer using JASS.     

4. Use JASS to store the buffer and stream the data in the buffer to the sound 
card at the specified sampling rate.   

5. The sound card synthesizes sounds based on the variations of the data stream 
in the audio buffer. 

6. Repeat the sonification for the remaining data streams from our FDE.  We 
sonify the data streams of the MOPs and MOEs from each batch of simulation 
run.  Hence, we have twelve sonified data streams. 

We performed Steps 1 and 2 using Microsoft® Excel.  We created two Java 

classes using JASS to perform Steps 3 through 6.  The DataStreamSonfication 

class is the user interface that allows the user to specify the sample rate, buffer size, and 

file name from which to read the data stream.  It calls the DataStreamBuffer class, 

which reads the data stream from a file into the audio buffer and computes the buffer for 

sound synthesis.  We then sonified all MOE and MOP data streams from the FDE. 

Recall that the output frequency of the signal is the quotient of the sampling rate 

divided by the buffer size.  Furthermore, recall that each data stream in the audio buffer is 

a batch of response parameters from our FDE.  Because each batch of data has 500 rows 

of seeds, we actually have 500 cycles in each batch.  Thus, the output frequency is the 

quotient of the sampling rate divided by the sample size, multiplied by the number of 

cycles in the buffer.  Hence, if we sample a buffer contain one batch of data stream that 

has 40,500 samples at a sampling rate of 40,500 samples per second, the actual output 

frequency is 500 Hz.  This output frequency corresponds to the lowest driving frequency 

in our FDE, which is one cycle per row of data.  Hence all other driving frequencies and 

indicator frequencies are multiples of the unitary driving frequency.  We did not alter the 

volume of the output manually because the amplitude of the response controls the output.  

Before we began sonification, we adjusted the volume of the speakers at our PC to an 

audible level and refrained from any manual adjustments until we completed our 

sonification unless the sound was too loud or too soft for comfort. 
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In addition to sonifying the data streams, we also created reference data streams 

that were digitized oscillations at the five driving frequencies.  For example, the sinusoid 



 

of the lowest driving frequency, 1 cycle per 81 samples, was digitized into 81 samples 

per cycle to represent a row of data from the FDE.  The values of the digitized 

oscillations were real numbers between 1 and –1.  We then replicated this digitized 

sinusoid to fill the data stream with five hundred rows of the same sinusoid.  We also 

created a noise data stream using the random number generator in Microsoft® Excel and 

generated uniform random variates.  Before we sounded the actual data streams we 

listened to sonifications of these data streams to verify our sonification.  For example, the 

sonified reference data stream of the lowest driving frequency (1 cycles per 81 samples) 

in our FDE resulted in a 500 Hz pure tone.  The sonified noise data stream resulted in 

white noise.   

3. Results 
When we heard the sounds of the sonified data streams, we were able to 

characterize at least three aspects of the sound: noise, signal, and volume.  The noise in 

the sound indicated the random component of the response.  The signal represented the 

response.  The intensity of the sound indicated the amplitude of the signal, i.e., the 

strength of the response.  The timbre of the signal indicated the complexity of the 

response, i.e., the number of indicator frequencies that significantly affect the response.  

Finally, a comparison between the presence of noise and signal indicated the relative 

intensity of these attributes in the sound.  Note this is similar to performing a Signal-to-

Noise Ratio (SNR) comparison real-time by listening to the sound.  In order to determine 

the relative levels of each of these attributes, we listened to the data streams of the same 

MOP or MOE from all three batches. 

The following is a description of a representative sonified data set that we heard.  

Wav files for the data streams are available from the author upon request. 

Data streams of blue agents killed:  The presence of white noise in all three 

sonified data streams sounded about the same.  The white noise sounded like high-

pressure air diffusing into the atmosphere.  However, the presence of signals in each 

sonified data stream sounded different from the others.  In the data stream of Batch 1, the 

signal had a dominant 500 Hz tonal component with some distortions and light buzzes.  

In Batch 2, the dominant signal was at a noticeably higher pitch that sounded hollow.  

There also were various tonal components at very high frequencies.  In Batch 3, the 
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dominant signal had the highest pitch of the three sonified data streams.  These 

differences made sense because we rearranged the driving frequency assignments for 

each of the three data streams.  The volume of all three sonified data streams sounded 

about the same.  However, the noise was “in front of,” i.e., masking to some extent, the 

signals.     

Data streams of red agents killed:  The white noise sounded similar to that in the 

data streams of red agents killed.  In Batch 1, various tonal components could be heard, 

with the dominant tonal sounding similar to the 500-Hz pure tone.  The dominant tonal 

component had a different timbre than the pure tone; it had more distortions and buzzes.  

In Batch 2, the dominant tonal in the signal was slightly higher than the one in Batch 1, 

and buzzes were more evident.  In Batch 3, the dominant tonal had the highest pitch of 

the three data streams.  The volumes were all about the same, but the signals were 

definitely in front of the noise. 

Data streams of FERs:  The white noise in these sonified data streams sounded 

soft and grainy.  In Batch 1, the dominant tonal sounded like the 500-Hz pure tone, but it 

had other higher-pitch tonal components that were noticeable.  In Batch 2, the dominant 

had a higher pitch than Batch 1, with marginally noticeable higher-pitch tonal 

components.   In Batch 3, the dominant tonal had the highest pitch of the three data 

streams.  Additionally, we noticed a rhythmic click in the sound of the data stream for 

Batch 3.  The click occurred at the end of the buffer before the buffer was played back.  

The volumes were all noticeably lower than the data streams of the MOPs.  The data 

stream of Batch 2 sounded a little louder than the rest, but Batch 3 had a noticeably lower 

volume than the other two data streams.  The presence of noise and signal were about the 

same in all three data streams.   

Data streams of ERs:  The white noise was very grainy and crackly in these data 

streams, like the tearing of a piece of sandpaper.  In Batch 1, again the dominant tonal 

sounded like the 500-Hz pure tonal.  In Batch 2, the dominant tonal had a higher pitch.  

In Batch 3, the dominant tonal had the highest pitch of the three data streams.  The 

volumes were lower than those of the MOPs and about the same as the FERs.  The 
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graininess of the noise made the noise sounded in front of the signal in all three data 

streams more than data streams of the other parameters. 

4. Discussion of Results 
We can explain the similarity between the volumes by the sensitivity of human 

hearing to logarithmic change in volume.  Recall that the total number of blue agents in 

the scenario is 34, and the total number or red agents is 14.  The logarithmic variations in 

the number of respective agents killed are small.  Hence, the differences in volumes 

between data streams of the MOPs were not very noticeable; they sounded roughly the 

same.  Examining the visual spectra associated with the parameters from all three 

batches, we see that the noise patterns agree with the visual spectra.  The noises for the 

MOPs account for more variability than the noises of the MOEs.  Hence, the noises of the 

MOPs are not only louder, but also more saturating than the noises of the MOEs. 

5. Other Concepts for Sonification 
In addition to the methods employed in this thesis, there are many other methods 

available for the sonification of the simulation data set and subsequent manipulations and 

analysis of the auditory display.  For example, one concept is an auditory display that 

supplements the visualization of the response parameters.  We chose dimensions of the 

data set to display visually.  We also chose from the remaining dimensions of the data set 

those we wish to sonify.  We supplement the visual display with data sonification using 

slider bars to sonify regions of interest to our analysis.  This is similar to the PCS 

example mentioned previously.   

 

F. CONCLUSIONS  
We seek to answer two questions from our development of sonification and 

auditory display: 

Question 1.  How does this sonification  display improve data analysis? 

When we compared the qualitative characterization of the sonified data streams to 

the visual spectra of the four response parameters, we saw—and heard—agreements 

between the visual display and the sonification of the data sets.  Therefore, we believe 

that we have proven the feasibility of representing simulation data from the FDE with our 
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sonification.  Furthermore, we note that each data stream contains the response from all 

observations from each batch, i.e., each data stream has 40,500 observations of one MOP 

or MOE from the simulation output data set.  Recall that our sampling rate is 40,500 

samples per second.  Hence, in one second, we can hear the entire batch of MOPs.  

Furthermore, we are able to differentiate between data streams with respect to the three 

sonic attributes after listening to each data stream for just a few seconds.  Therefore, we 

believe that data sonification may have the potential of becoming an efficient qualitative 

analysis technique of complex data sets that saves time in computational processes and 

data analysis. 

Question 2.  What can be obtained by this sonification and this auditory display 

that you can’t obtain with visualization? 

Based on our results, we assert two implications of our sonification with respect 

to data analysis.  First of all, in addition to the possibility of efficiently sampling the data 

space using the frequency domain approach, data analysis using our sonification may 

reduce the number of simulation runs required for data collection while enabling the 

analyst to inject more complexity in the response by simultaneously varying more factors 

in the frequency domain experiment.  When we examine an “orchestrated” selection of 

observations over the entire data space, the multimodal representation imparts a more 

representative rendering of the chaotic behavior and/or the hidden periodicities induced 

by our frequency domain experiment.  Secondly, data analysis by our sonification may be 

performed more quickly than visualization.  We hear the entire set of 40,500 observations 

in one second when we set the sampling rate to 40,500 samples per second.  Based on our 

results, we can qualitatively differentiate between data streams within a few seconds.  

Thus, each observation contributes to the analysis, and the overall sound is a 

“symphonic” representation of the data space. 

We also assert that our sonification method provides the first step towards a 

robust auditory display that will enable different users to arrive at the same conclusions.  

Recall that the output frequency of our sonification is determined by the sampling rate, 

the sample size, and any inherent cycles in the sample.  Our sonification allows the user 

to specify the sample rate to sample the buffer for a given buffer size, within the 
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limitations of the computer and with consideration of the Nyquist criterion and aliasing.  

Therefore, the user may determine the frequency at which to analyze the data stream that 

best suits his or her hearing acuity.  Because the entire data stream is sonified at the same 

proportion, theoretically all other attributes of the sound should remain the same. 

 

G. RECOMMENDATIONS FOR FUTURE RESEARCH 
Based on what we learned, we offer the following recommendations: 

First, a user interface is needed to permit usability of the sonification.  Currently, 

we perform the sonification using command-line arguments in DOS, and thus the current 

process is definitely not user-friendly.  We suggest a graphic user interface (GUI) shell 

for the sonification.  We believe the GUI should have at least the following functions: 

1. File utility functions that allow the user to administrate the files of data 
streams. 

2. A visual display that incorporates the spectral analysis portion of the FDE and 
displays the spectra from the analysis. 

3. Sonification functions that enable the user to select data streams to sonify and 
analyze.   

In particular, we strongly recommend including filter functions, e.g., notch filters, 

to permit the user to filter out the noise and analyze the signal, as well as other signal 

analysis techniques to decompose the signal into component frequencies for the user to 

correlate with the respective terms in the regression analysis of the response data set.  

Because the lowest meaningful frequency is the output frequency, a high-pass filter may 

be useful to minimize low frequency noise.  Moreover, because the indicator frequencies 

are discrete, band pass filters may also be useful in filtering out noise at non-indicator 

frequencies above the output frequency.  Finally, notch filters may be useful for listening 

to particular indicator frequencies. 

Furthermore, we propose the following general guidelines for the design of a 

human participant experiment to validate our claim that this auditory display can improve 

the data analysis of multidimensional data sets.  The experiment tasks participants to 

perform factor screening of a nonlinear model, e.g., a second-order model with 

interaction terms like our meta-model from FDE.  The design of the experiment would be 

similar to Bly [1982] and Fitch and Kramer [in Kramer, 1994]: 
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1. Select participants with experiences in data analysis. 
2. Train and apply three treatments to participants: 1) a visual-only display; 2) a 

combination of visual and auditory display; and 3) a “beta” version of this 
auditory-only display.  

3. Task the participant to determine the factors in the model that contribute 
significantly to the response of the model using the treatment displays. 

4. Measure the amount of time for the participant to complete the factor 
screening and the percentage of correct and incorrect identification.  In 
addition, survey the participants for background information and for 
feedbacks about the treatment displays, as well as personal preferences of the 
treatment displays.  

We recognize that it may require additional research to develop a bimodal display 

for such a comparison; thus it may be practical to compare a visual display with the beta 

version of this display.  We recommend using typical data visualization and analysis 

programs such as S-Plus 2000 as the visual-only display. 

We also recommend efforts to spatialize data streams using headphone-based 

spatialization techniques so that a user can analyze multiple parameters simultaneously.  

These techniques allow sounds to be presented in 3-D with complete externalization 

around the user’s head [Shilling & Shinn-Cunningham, 2002].  These techniques allow 

the user to hear and recognize multiple data streams simultaneously. 

Because data sonification is still an emerging field of application, there are no 

established standards for designing sonification schemes—only intuition, art, and past 

examples of sonification techniques to emulate.  A good resource is the International 

Community for Auditory Display (ICAD), formerly the International Conference on 

Auditory Display.  The ICAD website, http://www.icad.org, contains papers and 

conference proceedings relevant to the diverse applications of auditory displays and data 

sonification. 

Finally, based on our results and the examples of other sonificiation efforts, we 

believe that using sonification to harvest data in data farming has significant potential for 

success.  Therefore, we strongly recommend future research to explore the possibilities of 

data farming with sonification. 
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V. SUMMARY OF RESULTS 

For this thesis, we attempted to apply an interdisciplinary approach to operations 

research.  First, we examined the feasibility of data farming in the frequency domain and 

conducted FDEs using a peace enforcement scenario in MANA.  By considering the 

simulation as a waveshaping function, we then attempted to develop an auditory display 

by sonifying data streams of four measures from the output data set using a direct-

mapping technique that maps values of the measures to the amplitudes of the wave shape.   

With respect to data farming in the frequency domain, we have achieved our key 

objectives of evaluating the frequency domain approach as a means of planting and 

harvesting data efficiently.  The results from our FDE confirm the regression model from 

which we selected our factors.  Furthermore, the resulting visual spectra from the FDE 

are useful for simultaneous comparison of factors and interactions that we seek to 

evaluate.  Therefore, we conclude that the frequency domain approach is not only a 

feasible method for data farming, but also a useful technique for factor screening that is 

easy to generate.  From our results, we believe that the frequency domain approach to 

simulation output analysis will help operations analysts and decision makers answer 

complex and difficult questions about military operations and/or other complex 

operations. 

With respect to the purposes of developing an auditory display using sonification, 

we have developed a simple auditory display using data sonification that can be used for 

factor screening of multidimensional data sets for data farming.  We arranged response 

parameters from our FDE in data streams and sonified the streams by performing direct 

mapping of response to amplitude of output oscillations.  The resulting sounds contained 

noise and signals that agree with the visual spectra from harvesting our data in the 

frequency domain.  Even though we did not conduct an experiment to validate our goals 

for creating a data sonification display, our informal results indicate that it is feasible to 

use an auditory display for data analysis in data farming environment.   

We are very encouraged by our attempt in integrating simulation output analysis 

and human factors.  We believe there is significant value in further research to develop an 
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auditory display using sonification that will benefit data farming in the frequency 

domain.  One potential application for our display is in the training and development of 

analytical judgments of complex data sets.  Entry-level data analysts can generate a data 

set using an FDE and sonify the resulting data streams using the display.  The analysts 

can then use the display to explore the response data set and understand how different 

parameters contribute to the variability of the response parameters both visually and 

auditorily.  In addition, we suggest a very interesting and worthwhile improvement to the 

display that renders simultaneous representation of several response parameters using 

spatial audio.  We conjecture that this improvement may allow analysts using the display 

to appreciate the contributions of factors to responses from an overall perspective, thus 

gaining insight into the complexity of the responses. 

We embarked on our research having in mind the ultimate goal of a virtual 

environment for the analysis of complex data sets.  We imagine that someday an 

immersive environment created through a multimodal display will enable the operations 

analyst to use more than just visual and auditory perceptions in order to improve 

understanding of the complexity of military operations.  Through this research effort we 

believe we have advanced one step closer toward this goal, and strongly recommend 

continued research and development to make this goal a reality. 
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APPENDIX A: MANA SCENARIO INFORMATION 

# Mana Scenario File 
# Nov 30 2000 
 
 
_________________________________________________________________ 
 
The below summarizes which 22 factors will be examined, the 

overview of the mission, a definition of peace enforcement, and the 
rules of engagement which Blue forces would receive for conducting the 
operation. 

_________________________________________________________________ 
 
INITIAL 22 FACTORS IDENTIFIED FOR EXTENSIVE EXAMINATION 
A.  Blue Platoon HQ move precision - amount of randomness in blue 

movement 
B.  Blue Squad 1 move precision - amount of randomness in blue 

movement 
C.  Blue Squad 2 move precision - amount of randomness in blue 

movement 
D.  Blue Squad 3 move precision - amount of randomness in blue 

movement 
E.  Blue Platoon HQ in contact personality element w1 - controls 

propensity to move towards agents of same allegiance 
F.  Blue Squad 1 in contact personality element w1 - controls 

propensity to move towards agents of same allegiance 
G.  Blue Squad 2 in contact personality element w1 - controls 

propensity to move towards agents of same allegiance 
H.  Blue Squad 3 in contact personality element w1 - controls 

propensity to move towards agents of same allegiance 
I.  Blue Platoon HQ in contact personality element w2 - controls 

propensity to move towards agents of enemy allegiance 
J.  Blue Squad 1 in contact personality element w2 - controls 

propensity to move towards agents of enemy allegiance 
K.  Blue Squad 2 in contact personality element w2 - controls 

propensity to move towards agents of enemy allegiance 
L.  Blue Squad 3 in contact personality element w2 - controls 

propensity to move towards agents of enemy allegiance 
M.  Blue Platoon HQ injured personality element w1 - controls 

propensity to move towards agents of same allegiance 
N.  Blue Squad 1 injured personality element w1 - controls 

propensity to move towards agents of same allegiance 
O.  Blue Squad 2 injured personality element w1 - controls 

propensity to move towards agents of same allegiance 
P.  Blue Squad 3 injured personality element w1 - controls 

propensity to move towards agents of same allegiance 
Q.  Blue Platoon HQ injured personality element w2 - controls 

propensity to move towards agents of enemy allegiance 
R.  Blue Squad 1 injured personality element w2 - controls 

propensity to move towards agents of enemy allegiance 
S.  Blue Squad 2 injured personality element w2 - controls 

propensity to move towards agents of enemy allegiance 
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T.  Blue Squad 3 injured personality element w2 - controls 
propensity to move towards agents of enemy allegiance 



 

U.  Blue movement range for all squads - controls movement speed 
of agents 

V.  Red personality element w8 - controls propensity to move 
towards enemies (Blue) in situational awareness map which are of threat 
level 1 

Notes:   
Factors A-D will have settings of 1-513 in increments of 4 which 

will correspond to 129 levels 
Factors E-T and V will have settings of -64 to 64 in increments 

of 1 which will correspond to 129 levels 
Factor U will have settings of 72 to 200 in increments of 1 which 

will correspond to 129 levels 
Firepower and sensor ranges of all allegiances will be equal to 

amplify personalities - furthermore a high firepower range in essence 
has blue destroying red right from the simulation start 

Red and Blue will have same stealth settings, but Yellow will 
have increased stealth which represents that although we initially knew 
them to be of the same allegiance as Blue it is difficult to ascertain 
they have switched allegiances 

_________________________________________________________________ 
 
MISSION 
Blue Mission:  Destroy red element of 5-7 soldiers, who are 

equipped with small arms, located in vicinity of area of operation (AO) 
Cobra within the next two hours in order to facilitate UN food 
distribution and military convoy operations.   

Scheme of Maneuver:  Blue uses a light infantry platoon composed 
of three nine-man rifle squads and a platoon HQ of seven soldiers 
containing two machine gun teams.  Their movement scheme is one squad 
up and two squads back with platoon HQ following the lead squad (2nd 
squad).  1st squad task is to follow and support 2nd squad with purpose 
of destroying red element.  Follow-on task is to secure area of 
operation Python for subsequent UN food distribution and military 
convoy operations.  2nd squad task to conduct movement to contact with 
purpose of destroying red element.  Follow-on task is to secure area of 
operation Cobra for subsequent UN food distribution and military convoy 
operations.  3rd squad task is to follow and support 2nd squad with 
purpose of destroying red element.  Follow-on task is to secure area of 
operation Boa (a small urban area with four building structures) for 
subsequent UN food distribution and military convoy operations.  After 
2nd squad secures area of operation Cobra, Platoon HQ moves to area of 
operation Boa to provide supporting fires for 3rd squad.  Red has 5 
member element located vicinity Cobra.  Red also has two 2 member 
elements patrolling along movement routes of blue squads 1 and 2.  Red 
has 2 member element in vicinity Boa.  A non-hostile (and Blue 
allegiance) Yellow 3 member element is initially in Blue's starting 
location.  After discovering no safe water in vicinity Rattler, Yellow 
becomes hostile against Blue, seeks small arms from vicinity Boa, and 
moves to vicinity Python. 

_________________________________________________________________ 
 
PEACE ENFORCEMENT (From FM 100-23) 
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Peace Enforcement is the application of military force or the 
threat of its use, normally pursuant to international authorization, to 
compel compliance with generally accepted resolutions or sanctions. The 
purpose of Peace Enforcement is to maintain or restore peace and 
support diplomatic efforts to reach a long-term political settlement.  



 

_________________________________________________________________ 
 
RULES OF ENGAGEMENT FOR SCENARIO 
1. (U) Situation. Basic OPLAN/OPORD.  
2. (U) Mission. Basic OPLAN/OPORD.  
3. (U) Execution.  
(U) Concept of the Operation.  
(U) If you are operating as a unit, squad, or other formation, 

follow the orders of your leaders.  
(U) Nothing in these rules negates your inherent right to use 

reasonable force to defend yourself against dangerous personal attack.  
(U) These rules of self-protection and rules of engagement are 

not intended to infringe upon your right of self defense. These rules 
are intended to prevent indiscriminate use of force or other violations 
of law or regulation.  

(U) Commanders will instruct their personnel on their mission. 
This includes the importance of proper conduct and regard for the local 
population and the need to respect private property and public 
facilities. The Posse Comitatus Act does not apply in an overseas area. 
Expect that all missions will have the inherent task of force security 
and protection.  

(U) ROE cards will be distributed to each deploying soldier (see 
below ).  

(U) Rules of Self-Protection for all Soldiers.  
(U) US forces will protect themselves from threats of death or 

serious bodily harm. Deadly force may be used to defend your life, the 
life of another US soldier, or the life of persons in areas under US 
control. You are authorized to use deadly force in self-defense when--  

(U) You are fired upon.  
(U) Armed elements, mobs, and/or rioters threaten human life.  
(U) There is a clear demonstration of hostile intent in your 

presence.  
(U) Hostile intent of opposing forces can be determined by unit 

leaders or individual soldiers if their leaders are not present. 
Hostile intent is the threat of imminent use of force against US forces 
or other persons in those areas under the control of US forces. Factors 
you may consider include--  

(U) Weapons: Are they present? What types?  
(U) Size of the opposing force.  
(U) If weapons are present, the manner in which they are 

displayed; that is, are they being aimed? Are the weapons part of a 
firing position?  

(U) How did the opposing force respond to the US forces?  
(U) How does the force act toward unarmed civilians?  
(U) Other aggressive actions. 
(U) You may detain persons threatening or using force which would 

cause death, serious bodily harm, or interference with mission 
accomplishment. You may detain persons who commit criminal acts in 
areas under US control. Detainees should be given to military police as 
soon as possible for evacuation to central collection points.  

(U) Rules of Engagement. The relief property, foodstuffs, medical 
supplies, building materials, and other end items belong to the relief 
agencies distributing the supplies until they are actually distributed 
to the populace. Your mission includes safe transit of these materials 
to the populace.  

(U) Deadly force may be used only when--  
(a) (U) Fired upon.  
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(b) (U) Clear evidence of hostile intent exists (see above for 
factors to consider to determine hostile intent).  

(c) (U) Armed elements, mobs, and/or rioters threaten human life, 
sensitive equipment and aircraft, and open and free passage of relief 
supplies.  

(U) In situations where deadly force is not appropriate, use the 
minimum force necessary to accomplish the mission.  

(U) Patrols are authorized to provide relief supplies, US forces, 
and other persons in those areas under the control Of US forces. 
Patrols may use deadly force if fired upon or if they encounter 
opposing forces which evidence a hostile intent. Nondeadly force or a 
show of force should be used if the security of US forces is not 
compromised by doing so. A graduated show of force includes--  

(a) (U) An order to disband or disperse.  
(b) (U) Show of force/threat of force by US forces that is 

greater than the force threatened by the opposing force.  
(c) (U) Warning shots aimed to prevent harm to either innocent 

civilians or the opposing force.  
(d) (U) Other means of nondeadly force.  
If this show of force does not cause the opposing force to 

abandon its hostile intent, consider if deadly force is appropriate.  
(U) Use of barbed wire fences is authorized.  
(U) Unattended means of force (for example, mines, booby traps, 

trip guns) are not authorized.  
(U) If US forces are attacked or threatened by unarmed hostile 

elements, mobs, and /or rioters, US forces will use the minimum amount 
of force reasonably necessary to overcome the threat. A graduated 
response to unarmed hostile elements may be used. Such a response can 
include--  

(a) (U) Verbal warnings to demonstrators in their native 
language.  

(b) (U) Shows of force, including the use of riot control 
formations.  

(c) (U) Warning shots fired over the heads of the hostile 
elements.  

(d) (U) Other reasonable uses of force, to include deadly force 
when the element demonstrates a hostile intent, which are necessary and 
proportional to the threat.  

(U) All weapons systems may be employed throughout the area of 
operations unless otherwise prohibited. The use of weapons systems must 
be appropriate and proportional, considering the threat.  

(U) US forces will not endanger or exploit the property of the 
local population without their explicit approval. Use of civilian 
property usually be compensated by contract or other form of payment. 
Property that has been used for the purpose of hindering our mission 
will be confiscated. Weapons may be confiscated and demilitarized if 
they are used to interfere with the mission of US forces.  

(U) Operations will not be conducted outside of the landmass, 
airspace, and territorial seas of Somalia. However, any US force 
conducting a search and rescue mission shall use force as necessary and 
intrude into the landmass, airspace, or territorial sea of any county 
necessary to recover friendly forces.  

(U) Crew-served weapons are considered a threat to US forces and 
the relief effort whether or not the crew demonstrates hostile intent. 
Commanders are authorized to use all necessary force to confiscate and 
demilitarize crew-served weapons in their area of operations.  
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(a) (U) If an armed individual or weapons crew demonstrates 
hostile intentions, they may be engaged with deadly force.  

(b) (U) If an armed individual or weapons crew commits criminal 
acts but does not demonstrate hostile intentions, US forces will use 
the minimum amount of necessary force to detain them.  

(c) (U) Crew-served weapons are any weapon system that requires 
more than one individual to operate. Crew-served weapons include, but 
are not limited to tanks, artillery pieces, antiaircraft guns, mortars, 
and machine guns.  

(U) Within those areas under the control of US forces, armed 
individuals may be considered a threat to US forces and the relief 
effort, whether or not the individuals demonstrate hostile intent. 
Commanders are authorized to use all necessary force to disarm and 
demilitarize groups or individuals in those areas under the control of 
US forces. Absent a hostile or criminal act, individuals and associated 
vehicles will be released after any weapons are removed/demilitarized.  

(U) Use of riot control agents (RCAs). Use of RCAs requires the 
approval of CJTF. When authorized, RCAs may be used for purposes 
including, but not limited to--  

(1) (U) Riot control in the division area of operations, 
including the dispersal of civilians who obstruct roadways or otherwise 
impede distribution operations after lesser means have failed to result 
in dispersal.  

(2) (U) Riot control in detainee holding areas or camps in and 
around material distribution or storage areas.  

(3) (U) Protection of convoys from civil disturbances, 
terrorists, or paramilitary groups.  

(U) Detention of Personnel. Personnel who interfere with the 
accomplishment of the mission or who use or threaten deadly force 
against US forces, US or relief material distribution sites, or convoys 
may be detained. Persons who commit criminal acts in areas under the 
control of US forces may likewise be detained.  

(1) (U) Detained personnel will be treated with respect and 
dignity.  

(2) (U) Detained personnel will be evacuated to a designated 
location for turnover to military police.  

(3) (U) Troops should understand that any use of the feet in 
detaining, handling or searching Somali civilians is one of the most 
insulting forms of provocation.  

4. (U) Service Support. Basic OPLAN/OPORD.  
5. (U) Command and Signal. Basic OPLAN/OPORD.         
_________________________________________________________________ 
  
ROE Card  
Nothing in these rules of engagement limits your right to take 

appropriate action to defend yourself and your unit.  
1. You have the right to use force to defend yourself against 

attacks or threats of attack.  
2. Hostile fire may be returned effectively and promptly to stop 

a hostile act.  
3. When US forces are attacked by unarmed hostile elements, mobs, 

and/or rioters, US forces should use the minimum force necessary under 
the circumstances and proportional to the threat.  

4. You may not seize the property of others to accomplish your 
mission.  
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5. Detention of civilians is authorized for security reasons or 
in self-defense.  



 

Remember 
The United States is not at war.  
Treat all persons with dignity and respect.  
Use minimum force to carry out the mission.  
Always be prepared to act in self-defense.  
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APPENDIX B:  RESPONSE SPECTRA OF THE FREQUENCY 
DOMAIN EXPERIMENT 

Figures 16 through 27 are spectra of MOEs and MOPs from each batch of MANA 

distillation runs.  All spectra have window size of 10,000 (M = 10,000) and sample size 

of 40,500 observations (N = 40,500).  The figures are also color-coded:  The bars for the 

number of Blue Agents killed are in blue; the number of Red Agents killed are in red; the 

FER in green; and the ER in purple. 
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Figure 16.   Spectrum of the number of Blue Agents killed in Batch 1. 
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Figure 17.   Spectrum of the number of Red Agents killed in Batch 1. 

76 



 

 

0

5

10

15

20

25

30

U U2 FU F FU FG GP F2 GU G GU PV FP FG PU P PU GV G2 FP V2 FV GP UV V UV FV P2 PV GV

Regression Term

Sp
ec

tr
al

 P
ow

er
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Frequency (cycles per 81 observations)

 
Figure 18.   Spectrum of the FER in Batch 1. 
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Figure 19.   Spectrum of the ER in Batch 1. 
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Figure 20.   Spectrum of the number of Blue Agents killed in Batch 2. 
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Figure 21.   Spectrum of the number of Red Agents killed in Batch 2. 
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Figure 22.   Spectrum of the FER in Batch 2. 
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Figure 23.   Spectrum of the ER in Batch 2. 
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Figure 24.   Spectrum of the number of Blue Agents killed in Batch 3. 
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Figure 25.   Spectrum of the number of Red Agents killed in Batch 3. 
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Figure 26.   Spectrum of the FER in Batch 3. 
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Figure 27.   Spectrum of the ER in Batch 3. 
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APPENDIX C.  JASS CODE OF SONIFICATION PROGRAM 

The following Java source codes are created for sonification of data streams from 

FDE using JASS [Van den Doel and Pai, 2001].  JASS requires the sonification designer 

to extend the abstract classes and implement one of the inherited methods, 

computeBuffer(), to perform basic sound synthesis.  We created 

DataStreamBuffer, which extends the Out abstract class, to read the data stream 

into the audio buffer and implement the computeBuffer() method.  We also created 

a main class, DataStreamSonification, to sonify a data stream from our FDE data 

sets using a SourcePlayer object in JASS. 
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/* 
 * DataStreamBuffer.java 
 * 
 */ 
 
/** 
 * 
 * @author  Hsin-Fu Wu, LT, USN 
 */ 
package test; 
 
import java.io.*; 
import jass.engine.*; 
public class DataStreamBuffer extends Out { 
   private File file1; 
   private FileReader reader1; 
   private BufferedReader in1; 
    
   /** Creates a new instance of DataStreamBuffer */ 
   public DataStreamBuffer(int bufferSize) { 
      super(bufferSize); 
   } 
 
   public DataStreamBuffer(int bufferSize, String file1) { 
      super(bufferSize); 
      this.file1 = new File(file1); 
      try { 
         if (!this.file1.exists()) { 
            throw new RuntimeException("No such file: " + 
this.file1.getName()); 
         } 
         reader1 = new FileReader(this.file1); 
         in1 = new BufferedReader(reader1); 
      } catch (Exception e) {} 
   } 
     
   /** Compute the next buffer and store in member float[] buf. 
    * This is the core processing method which will be implemented 
    * for each generator. 
    */ 
   protected void computeBuffer() { 
      try { 
         for (int i = 0; i < getBufferSize(); i++) { 
            float a = Float.parseFloat(in1.readLine()); 
            buf[i] = a; 
         } 
      } catch (Exception e){}       
   } 
     
} 
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/* 
 * DataStreamSonification.java 
 * This class synthesizes sound from a numerical data stream supplied 
by the user. 
 * The inputs are sampling rate, buffer size, and the file name of the 
data stream. 
 * The output frequency = sampling rate  (samples per second) / buffer 
size (samples per cycle) 
 * If the data stream has inherent cycles, then the actual output 
frequency equals the number  
 * of cycles times the output frequency. 
 * The buffer is computed using the MyOutReadFromBuffer object. 
 * 
 */ 
 
/** 
 * 
 * @author  Hsin-Fu Wu, LT USN 
 */ 
package test; 
import jass.render.*; 
import jass.engine.*; 
import jass.generators.*; 
import java.awt.*; 
import java.applet.*; 
 
public class DataStreamSonification extends Applet{ 
     
   /** 
    * @param args the command line arguments 
    *  
    */ 
   public static void main(String[] args) { 
      float srate = Float.parseFloat(args[0]);  
      int bufferSize = Integer.parseInt(args[1]);  
      DataStreamBuffer streamer = new DataStreamBuffer(bufferSize, 
args[2]); 
      try { 
         new SourcePlayer(bufferSize,0,srate, streamer).start(); 
      } catch(Exception e) {} 
   } 
     
} 
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